
M62 Development Package
Software Manual
Development Package Software Manual 1

2

The M62 Development Package Software Manual was prepared by the technical
staff of Innovative Integration, March 1998.

For further assistance contact

Innovative Integration

5785 Lindero Canyon Road

Westlake Village, CA 91362

PHONE:(818) 865-6150

FAX: (818) 879-1770

email:techsprt@innovative-dsp.com

WWW:www.innovative-dsp.com

This document is Copyright 1998 by Innovative Integration. All rights are reserved.

VSS\M62\documents\C\M62sw.fm

#51046 rev – 1.01
Development Package Software Manual

Development Package Software Manual 3

4
 Development Package Software Manual

List of Tables . 9

List of Figures. 11

CHAPTER 1 Introduction . 13

A Note about this Manual. 14

CHAPTER 2 Installation . 15

Host Hardware Requirements. 15

Software Installation. 16

Configuring the Developer’s Package . 17

Multiple Board Support . 17

Troubleshooting Software Installation Problems . 19

CHAPTER 3 Integrated Development Environment 21

The Texas Instruments C Compiler Toolset . 21
C Compiler Toolset Usage. 22

Codewright Editor . 23

Code Composer Debugger . 23

Support Applets . 24
The Terminal Emulator . 27
The COFF File Downloader . 35
The COFF File Dump Utility . 39
The MPO Editor . 41
The Viewer Applet . 43

CHAPTER 4 Developing Target Code. 59

Introduction . 59

Edit-Compile-Test Cycle using Codewright . 60

A Simple Codewright Project. 61
Automatic makefile creation . 65
Rebuilding a Project . 68
Development Package Software Manual v

Running the Target Executable . 68

Anatomy of a Target Program . 69
Use of Library Code . 71
Compiling/Assembling/Linking Outside Codewright . 71
Compiling without a Project . 72
Building Libraries . 73

The Next Step: Developing Custom Code . 73

Edit-Compile-Test Cycle using Code Composer Studio 74

A Simple Studio Project . 74
Automatic makefile creation . 79
Rebuilding a Project . 79
Running the Target Executable . 79

CHAPTER 5 Developing Host Code . 83

Dynamic Link Library . 84
Sample Host Programs . 84
The XRPT example . 88

CHAPTER 6 Creating Target Software . 89

C Code Development. 89
C Compiler . 89
C Library Reference . 90
M62 Zuma Toolset Libraries . 90
M62 Hardware Interaction . 94
Digital Input/Output . 96
Timers . 98

Example Target Programs for the M62 . 102
HELLO . 102
TEST . 103
vi Development Package Software Manual

CHAPTER 7 Target DSP Peripheral Libraries 105

CHAPTER 8 Host DLL Reference. 113

CHAPTER 9 DOS Environment Requirements 119
Development Package Software Manual vii

viii Development Package Software Manual

List of Tables
List of Tables

TABLE 1. Generic DLL Function List . 49

TABLE 2. Viewer “target” memory selection commands 50

TABLE 3. Viewer “target” memory operators . 52

TABLE 4. Target memory display operators . 53

TABLE 5. TDUMP mode selector commands . 53

TABLE 6. Shorthand memory dump commands 54

TABLE 7. Viewer math and binary operators. 55

TABLE 8. Viewer dictionary commands . 55

TABLE 9. Viewer system commands . 56

TABLE 10. Viewer system commands . 56

TABLE 11. Target DLL function shortcuts . 56

TABLE 12. Zuma Toolset Source Directories . 91

TABLE 13. Zuma Toolset support subdirectories. 91

TABLE 14. Texas Instruments Standard Library Functions. 94

TABLE 15. M62 External Peripheral Memory Map 95

TABLE 16. Digital I/O Access Memory Location 96

TABLE 17. Digital I/O Latch Configuration . 97

TABLE 18. Digital I/O library functions . 98

TABLE 19. C Language Timer Functions . 98

TABLE 20. STDIO Driver Functions . 100

TABLE 21. Generic DLL Function List . 113

TABLE 22. Required disk directory structure for II development tools. . 120
Development Package Software Manual 9

10
 Development Package Software Manual

List of Figures
List of Figures

FIGURE 1. Terminal emulator applet. 27

FIGURE 2. Terminal emulator file menu . 28

FIGURE 3. Diagnostic received when target DSP is halted. 29

FIGURE 4. Terminal emulator plot menu dialog box. 29

FIGURE 5. Terminal emulator Window menu. . 32

FIGURE 6. The Coff File Downloader Applet. 35

FIGURE 7. The COFF Dump Utility . 39

FIGURE 8. COFF Dump utility output. 39

FIGURE 9. The MPO Editor . 41

FIGURE 10. MPOEditor "Open" Dialog box. 42

FIGURE 11. COFF File list change dialog box.. 42

FIGURE 12. Viewer main window. 43

FIGURE 13. Opening the target DSP. 44

FIGURE 14. Variants of Viewers dump command 45

FIGURE 15. Viewers plot window. 48

FIGURE 16. Creating a new project in Codewright. 62

FIGURE 17. Adding files to a Codewright project 63

FIGURE 18. Codewright Project Window. . 64

FIGURE 19. Codewright compiler progress in output window 65

FIGURE 20. An example of an auto-generated makefile. 67

FIGURE 21. Creating a new project in Studio . 75

FIGURE 22. Adding files to a Studio project. 76

FIGURE 23. Studio Project Window.. 77

FIGURE 24. Studio compiler progress in output window 79
Development Package Software Manual 11

12
 Development Package Software Manual

CHAPTER 1 Introduction
This document describes the Zuma software development environment for Innova-
tive Integration (I.I.) digital signal processor (DSP) cards. The environment comes
complete with ANSI compliant C code Compilation, Assembler, Linking, Debug-
ging, and Windows interface software and represents the most complete package
available for DSP code creation for Texas Instruments DSP processors.

Each Developer’s Package consists of four major features:

• TMS320-based DSP board

• Texas Instruments Floating Point C Compiler/Assembler toolset

• Code Composer JTAG-based hardware-assisted debugger

• Zuma software toolset including:

Codewright - integrated code generation environment including world-class
editor augmented by a custom DLL to provide makefile script generation and
DSP software toolset interface.

DSP Peripheral Library - supporting on-board peripherals and DSP functions,
with full source code

Custom 32-bit Windows 95/NT compatible dynamic link library (DLL) - which
utilizes a custom, 32-bit, Ring 0/Kernel-mode device driver for host PC soft-
ware application development
Development Package Software Manual 13

Introduction

14
Host Support Applets - for automatic program download, terminal emulation,
COFF file dumping and on-board flash programming

Sample Applications - showing Host PC as well as target DSP coding tech-
niques

This manual discusses installation issues and includes full documentation on all I.I.
software tools (please see the accompanying manuals for specific information on
the T.I. toolset or Code Composer software packages). Installation is discussed
first, followed by brief introductions to each of the software packages and instruc-
tions on their use. General software development issues are presented, and a tuto-
rial on DSP software development, particularly as it relates to the integrated use of
the software packages included in this kit, are also discussed. References are given
for the peripheral libraries and host DLL packages in the Appendices.

A Note about this Manual

Certain typography conventions are used in this manual to indicate user operations,
file types, etc., as follows:

• Windows application menu commands are identified and presented as pipe-
delimited strings indicating the menu entries which are being discussed. For
example, the Load Program menu item under the File menu in the Code Com-
poser package would be named by the following string:

File | Load Program

Computer readable files and keyboard input/output are represented in Courier
font, with user input in bold. For example, a program file will be referred to by
name as

C:\SBC32\TALKER\TALKER.OUT

while user input and commands look like

ROM MYPROG.OUT
Development Package Software Manual

CHAPTER 2 Installation
Installation of the Zuma toolset consists of both hardware and software installation
procedures. This document outlines the software installation process, which is
detailed in the accompanying Windows 95 Installation Supplement or Windows NT
Installation Supplement, as appropriate. This document details the features of the
Innovative Integration software generation tools, applets, utilities and peripheral
library functions for the target DSP board. Refer to the target DSP Hardware Man-
ual for a discussion of hardware-specific installation and configuration.

This document is intended to augment, not replace, the Installation Supplement and
the documentation provided with the TI C compiler, Code Composer and other
third-party software packages. Refer to the documentation provided with those
products for a complete discussion of their features and use.

Host Hardware Requirements

The software development tools for the Zuma toolset require an IBM or 100% com-
patible 486-class or higher machine for proper operation (Pentium-class machines
are highly recommended). The host must have at least 16 Mbytes of memory and a
CD-ROM (3.5" floppy disks available on request). Windows 95 or NT (referred to
Development Package Software Manual 15

Installation

16
herein simply as Windows) is required to run the developer’s package software, and
is the target operating system for which host software development is supported.

Users wishing to employ innovative DSP boards in systems running under a foreign
operating system, such as Unix or OS9 must install the Zuma toolset on a standard
Windows platform and use the Code Hammer hardware debugger to umbilcal over
the the DSP board residing in the foreign system in order effect code development.

Using this method, all of the features and facilities of the Zuma toolset and Code
Hammer may be brought to bear in the development of target DSP code and the
user need only generate foreign Host-specific code to perform target card commu-
nications and COFF object code downloading.

Software Installation

Refer to the to the Development Packge Installation Supplement, supplied with
your Developers Package, for specific instruction regardining the installation of
the software components of the Zuma Toolset..

In summary, the Zuma Package is installed as a multi-step process, with each com-
ponent package installed separately using that package’s installation instructions.
Install the component packages in the following order:

1. DSP Peripheral Library

2. HASP device driver

3. Board-specific device driver (except SBC31/32/54 products)

4. JTAG Device Driver

5. Code Composer debugger software (from GO DSPs disks)

6. TI Code Generation Tools (from TI’s CDROM)

7. Codewright Editor (from Premia’s CDROM)

After software installation is complete, install the hardware elements below.

8. The JTAG debugger board

9. The target DSP board
Development Package Software Manual

Configuring the Developer’s Package
Note: the order of installation of these packages is important. Please follow the
instructions included in with Code Composer and the TI Compilation Tools for
their installation methods. Do not attempt to install the target DSP hardware or the
JTAG controller board until the software installation is complete.

Configuring the Developer’s Package

Once the various tools have been installed, the software packages must be config-
ured for use in the target installation. Code Composer contains a Setup utility which
should be used to set up that application: follow the directions in the documentation
included with Code Composer to complete its configuration and set up.

Several environment variables must be added/set within your computer’s
AUTOEXEC.BAT file in order to obtain proper operation of the TI C Compiler/
Assembler.

Each of the included support applets creates and uses an application specific initial-
ization file (.INI) to store installation-specific properties. Available switches and
configurable settings for each applet are discussed in Section 3, below.

Multiple Board Support

Multiple target boards of the same type may be installed in the same system with
full development software support (the only exception being the JTAG debugging
support under Code Composer for multiple ‘C3x targets. Since the modified JTAG
standard used on the ‘C3x processors does not support multiple processor debug-
ging, Code Composer may be used with only one ‘C3x target at a time). Multiple
copies of the support applications may be run simultaneously, each communicating
with different targets, to provide parallel support for multiple target boards. Follow
the instructions below to set up support for more than one target:

1. Install the support software normally per the above instructions.

2. For each target board, make a Windows shortcut icon for each application which
must be used simultaneously. For example, if the system has three target boards
installed and the user wishes to use the COFF downloader and terminal emula-
tors independently with each board, then make three shortcuts each for the two
Development Package Software Manual 17

Installation

18
applications and label them “COFF Downloader Target 0”, “COFF Downloader
Target 1”, etc. To make a shortcut icon, open the “My Computer” desktop icon
and open the drive and installation directory where the development tools were
installed. Right click on the application for which the shortcut will be made,
and select “Create Shortcut”. A new icon will appear in the folder window,
labeled “Shortcut to [APPLICATION NAME]”. Rename the icon appropriately
by right clicking and selecting the “Rename” menu entry and entering a new
board-specific name, such as “COFF Downloader for Board#1”. Optionally, the
shortcut may be dragged onto the desktop and the file folder closed to clear dis-
play space.

3. Once the shortcut copies have been made for all instances of the application(s)
for each target, the shortcuts must be customized to point to their respective tar-
get boards. This is accomplished by adding command line switches to the Prop-
erties dialog box for each shortcut. Right click on each shortcut and select the
“Properties” entry to open the Properties dialog box. Select the “Shortcut” tab
and edit the “Target” text box. Add the target number override switch (-t) fol-
lowed by a space and the target number of the board with which this instance of
the program will communicate. To find out each board’s target number, use the
FIND utility (described below). For example, if the system has two targets
installed, one at target number 0 and one at target number 1, the shortcut for the
first board’s COFF downloader would have a “Target” entry of

[install directory]\DOWNLOAD.EXE –t 0

and the second board’s COFF downloader shortcut would have an entry of

[install directory]\DOWNLOAD.EXE –t 1

Additional switches may be specified in the “Target” text box to further modify
the applications’ individual behaviors. See the support applications’ descrip-
tions below for complete details on the switches available for each application.

4. Note: the command line switches specified in the shortcut properties box act as
overrides to the default behavior selected in the configuration utility. Any
switches NOT specified in the shortcut properties dialog box will cause the
applications to revert to the global configuration selected in the configuration
program. For example, if the user selects the Automatic Download feature in
the configuration utility and specifies a filename, then all shortcuts created for
the COFF downloader will automatically download that file on startup. If one
of the shortcuts specifies a -d[FILENAME] switch in its property box, then that
Development Package Software Manual

Troubleshooting Software Installation Problems
shortcut will download the specified filename on startup, rather than the default
application selected in the configuration utility.

Troubleshooting Software Installation Problems

If you encounter problems using the development environment, check the follow-
ing:

• TERMINAL.INI and DOWNLOAD.INI files. If the support applications do
not function correctly, make sure that the configuration has been set up properly
for the hardware. Double check the target number override option: if the option
is activated, make sure the correct number of target cards have been installed in
the host system.

• If the support applications present an error indicating the JTAG interface should
be checked, make sure the target is not being held in a non-running state by the
Code Composer (or other debugger) software. Select the Run Free command
in Code Composer, or type RUNF if using the Texas Instruments JTAG debug-
ger software.

• If the support applications present an error indicating the target device driver
(.VXD for ’95 or .SYS for NT) is not available, make sure that the hardware
device drivers have been installed correctly (see the Hardware Manual for com-
plete information on installing device drivers).

If components of the Developer’s Package still do not operate correctly, contact
Innovative Integration for technical support.
Development Package Software Manual 19

Installation

20
 Development Package Software Manual

CHAPTER 3 Integrated Development
Environment
The C Developer’s Package consists of several software tools, integrated to work
together to provide a complete DSP design environment for Innovative Integration
DSP boards. This section discusses each of the tools included in the package and
gives descriptions of each applets features and use. In the case of the third-party
packages, such as the Code Composer, Codewright and Hypersignal programs, a
brief introduction is given regarding the program and its use within the Developer’s
Package and the user is referred to the individual manuals accompanying those
products for complete documentation.

The Texas Instruments C Compiler Toolset

The C compiler supplied with the Developer’s Package is the Texas Instruments
(T.I.) Floating Point C Compiler toolset for the TMS320C3x/4x family. The com-
piler runs under Windows as a cross compiler, generating executable applications
for the DSP processor which are then downloaded and executed using the other
tools in the Developer’s Package. The compiler is ANSI C compatible and sup-
Development Package Software Manual 21

Integrated Development Environment

22
ports nearly all standard C functions. Additional libraries provided with the Devel-
oper’s System include C standard I/O and peripheral drivers for the A/D, D/A, bit-I/
O and timers. Assembly language may also be mixed with C code for higher per-
formance where required.

Typical application programs will consist of one or more C (.C), header (.H), and
Assembly language (.ASM) source files, as needed. Additionally, target program
generation requires use of a linker command file (.CMD) which specifies the mem-
ory map for the target and optionally includes commands defining the libraries to
be linked into the final application.

Users of the Codewright editor will also employ make (.MK), make include files
(.MKI) and project files (.PJT). The example programs included in the Devel-
oper’s Package illustrate the use of these files and give example files to use as a
basis for custom DSP applications.

Users of the Code Composer Debugger will also employ make (.MAK), workspace
(.WSP) and special Code Composer-specific script files (.GEL). The example pro-
grams included in the Developer’s Package illustrate the use of these files also and
give example files to use as a basis for custom DSP applications.

C Compiler Toolset Usage

The C compiler may be run directly from a DOS Prompt window under Windows
95/NT as described in the TI toolset documentation. Also included in the installa-
tion directory are batch files useful for manually rebuilding applications programs
within the DOS environment. COMPILE.BAT and ASSEMBLE.BAT are batch
files which will recompile/reassemble a C or Assembly source file (respectively)
specified as a target parameter to these batch files. The LINK.BAT will invoke the
TI Linker to link several object modules to create a target executeable (.OUT) file,
comsuming a linker command file (.CMD) as a parameter.
Development Package Software Manual

Codewright Editor
Codewright Editor

Codewright is a flexible, high-performance, integrated code generation environ-
ment developed by Premia Corporation and bundled into the Innovative Integration
Zuma toolset. While Codewright supports code editing, emulating numerous popu-
lar editing packages (Brief, EMACS, CUA, etc.), Codewright is much more than
simply a Window editor – it supports literally hundreds of extremely useful exten-
sions for project-oriented code development, including syntax highlighting, file dif-
ferencing, version control interfaces, file greps and much more. Additionally, each
developers package includes the Innovative Integration-developed, TIDeps DLL
which further extends the capabilities of Codewright to support rapid development
of DSP programs via the TI toolset (Compiler, Assembler, Linker and Archiver).
For a complete reference to the features of Codewright, refer to the Codewright
Users Guide. For details on the features of the Innovative Codewright TIDeps
DLL extension, refer to the accompanying CodeWright Support Reference Manual.

Custom DSP code creation takes place within the Codewright environment using
its project management tools to maintain the relationship between source files,
linker command files, and build revisions. The example programs included in the
Developer’s Package each have a Codewright project file (.PJT) while specifies
the project component files and make include file (.MKI) which specifies the TI
tool options. The supplied Codewright extension DLL automatically generates
make-compatible make files which are used to construct application executables or
rebuild libraries while within the Codewright environment. If the user wishes to
compile outside of Codewright (or has not purchased the package), these make files
may be used from the DOS command line to rebuild individual project files or the
entire target file set.

Code Composer Debugger

Code Composer is a software program for high-level TI C and Assembly Language
debugging which supports high-performance, JTAG or MPSD-based hardware
Development Package Software Manual 23

Integrated Development Environment

24
assisted debugging directly on the target DSP to gain access to the internal register
set, peripherals, and bus of the target board in order to load, run, and debug applica-
tions. Also integrated into the Code Composer software package is a code manage-
ment subsystem for editing files as well as creating and compiling DSP projects.

If desired, custom DSP code development can also take place entirely within the
Code Composer environment using its project management tools to place source
files, libraries and linker command files into project workspaces (.WSP) in order to
build executables. The example programs included in the Developer’s Package
each have a Code Composer project file (.MAK) and workspace file (.WSP) associ-
ated with them which may be used to recompile the example.

Since Codewright is a superior code generation environment to Code Composer,
most users find that it is efficient to edit and compile DSP projects within Code-
wright to the point where executable target code has been created and then use
Code Composer to load and debug the executable, as required.

For complete documentation on the Code Composer package, see the manuals pro-
vided by Go DSP.

Support Applets

The Developer’s Package includes four support applications supporting general
DSP development: the terminal emulator (TERMINAL.EXE), the COFF file down-
loader (DOWNLOAD.EXE), the COFF file display utility (COFFDUMP.EXE) and
the FLASH prom programming facility (BURN.EXE).. This section describes the
functionality of each of the applications and their use within the development sys-
tem.
Development Package Software Manual

Support Applets
The functions provided by each of the applications may be configured through
menu selections available within each of the applets themselves. Generally, param-
eters governing the behavior of each applet are stored in program-specific .INI
files, located in the directory from which the applet is invoked. See the discussion
below for applet-specific parameters.

Development Package Software Manual 25

Integrated Development Environment

26
 Development Package Software Manual

The Terminal Emulator

The terminal emulator provides a C language-compatible, standard I/O terminal
emulation facility for interacting with the stdio library running on the DSP pro-
cessor. Display I/O calls such as printf(), scanf(), and getchar() are
routed between the DSP target and the Host terminal emulator applet where ASCII
output data is presented to the user via a terminal emulation window and host key-
board input data is transmitted back to the DSP. The terminal emulator works
almost identically to console-mode terminals common in DOS and Unix systems,
and provides an excellent means of accessing target program data or providing a
simple user interface to control target application operation.

FIGURE 1. Terminal emulator applet

The terminal emulator is straightforward to use. The emulator will respond to stdio
calls automatically from the target DSP card and should be running before the DSP
application is executed in order for the program run to proceed normally. DSP pro-
gram execution will be halted automatically at the first stdio library call if the ter-
minal emulator is not executing when the DSP application is run, since standard I/O
uses hardware handshaking, except on stand-alone SBC targets. stdio output is
automatically printed to the current cursor location (with wraparound and scroll-
ing), and console keyboard input will also be displayed as it is echoed back from
the target.

The terminal emulator also supports Windows file I/O using the library routines
fopen(), fclose(), fread(), fwrite(), fseek() and fflush().
Refer to the Appendix for prototypes and usage of these library functions as their
usage is not 100% ANSI compliant.
Development Package Software Manual 27

28
Terminal Emulator Menu Commands. The terminal emulator provides several
menus of commands for customizing its functionality. The following is a descrip-
tion of each menu entry available in the terminal emulator, and its effects.

FIGURE 2. Terminal emulator file menu

File Menu. File | COFF Download - provides for COFF program downloads from
within the terminal emulator. When selected, a file requester dialog box is opened
and the pathname to the COFF filename to be downloaded is selected by the user.
Clicking “Open” in the file requester once a filename has been selected will cause
the requester to close and the file to be downloaded to the target and executed.
Clicking “Cancel” will abort the file selection and close the requester with no
download taking place.

Q62 Users: Terminal supports downloading of .OUT or multi-processor .MPO
files. .MPO files provide a means of downloading separate .OUT files to multiple
processors simultaneously, which greatly simplifies the task of synchronizing exe-
cution in a multi-processor environment.

NOTE: File | COFF Download physically resets the target DSP (in order to initiate
the target Talker program) prior to the download. When using the terminal emula-
tor in conjunction with the Code Composer debugger, use Code Composers File |
Load Program facility to download executable code to the target rather than the ter-
minal emulator’s download facility, since the Code Composer mechanism does not
physically reset the target during the download and is not reliant on the target
Talker to perform the download.
Development Package Software Manual

FIGURE 3. Diagnostic received when target DSP is halted.

If you attempt to download using the COFF Download menu within the terminal
emulator while using Code Composer, you may receive the diagnostic dialog box
which indicates that Code Composer has halted the target processor via the JTAG
hardware link and while in this halted state, the terminal emulator cannot invoke
the Talker program on the target DSP in order to perform the software download.
To correct this problem, execute the Debug | Run Free menu command from within
Code Composer to release the DSP from JTAG control. Afterwards, clear the ter-
minal emulator error message dialogs and retry the terminal emulator COFF Down-
load.

File | Plot – opens the Plot dialog box, similar to the one listed below.

FIGURE 4. Terminal emulator plot menu dialog box.
Development Package Software Manual 29

30
The Plot dialog specifies all of the available options for plotting binary data in Host
PC files. Binary data files, usually created by target DSP programs using the
fopen() and fwrite() functions, may contain data in a wide variety of formats
which may be plotted in a window from within this dialog box.

Each time data is plotted in the plot window, statistics on the plotted graph are cal-
culated. These statistics are reported in the graph window. The statistics include:

Min displays the minimum value in the data set.

Max displays the maximum value in the data set.

Delta displays the difference between the minimum and maximum values in the
data set.

Sdev displays the standard deviation of the data set.

Mean displays the mean value of the data set.

The terminal emulator is capable of plotting files in which binary data has been
stored in a wide variety of formats. The default data file format is successive 32-bit
(four-byte) values each representing a single TI floating point Y amplitude value.
X axis data is not contained in the file and the Y axis amplitude data is plotted
against an implied X axis of successively incrementing sample # values, starting at
zero.

Each of the available plot options is detailed below.

Edit Boxes . Significant Bits specifies the number of significant bits in each data
value stored in the data file. The number of bits may range from one to thirty-one.
This parameter allows you to plot data gathered from a device at virtually any reso-
lution. For example, if data is accumulated from a 12-bit A/D converter and stored
into a binary data file from the target DSP, it would be stored on disk as 16-bit byte-
pairs. When plotting this data, with significant bits set to 12, the fallow upper four
bits of each 16-bit sample in the data file will be ignored during the data plotting
operation.

This parameter indirectly specifies the size of each data sample within the data file,
as well. The size of each sample (in bytes) is given by the equation:

Sample size = (significant bits + 7) / 8
Development Package Software Manual

The sample size is always the truncated integer result of this formula. Use of the
term sample throughout the rest of this section refers to clusters of bytes within the
data file of size sample size.

Shifted specifies the number of bits to shift each data sample stored in the data file,
prior to plotting. The number of bits may range from negative thiry-one to positive
thiry-one. This paramater allows you to plot data gathered from a device when the
output lines of the device are not mapped onto the low-order lines of the data bus.
For example, on some of Innovative’s DSP boards, a 12-bit A/D is mapped onto
data bus bits 15 though 4 rather than on bits 11 through 0. If this data were plotted
without modification, the data would erroneously range from –32767 to +32768
rather than the actual 12-bit A/D range of –2047 to + 2048. By specifying a Shifted
parameter of 4, each data sample extracted from the data file would be right-shifted
four bits prior to plotting to compensate for this effect.

Decimate specifies the number of file data points to be skipped between plotted
data samples. This option is useful when dealing with a data file containing more
than one sample set or in instances where more data is contained in the file than
need be plotted. This field must contain a value greater than or equal to one. A
value of one specifies that no data should be skipped; a value of two specifies that
every other data sample should be discarded, etc.

Header specifies the number of file data samples to be skipped at the beginning of
the data file before extracting data to be plotted. This option is used to skip irrele-
vant data appearing at the beginning of a data file.

Note: Combinations of Decimate and Header can be used to view individual, 16-
bit channels of data acquired as 32-bit pairs on certain DSP boards. For example,
the PC31 features two A/D channels, A and B. The A channel is mapped onto the
upper 16-bits of the 32-bit data bus while the B channel is mapped to the lower 16-
bits of the bus. If this data were written to a data file as 32-bit data, The Decimate
parameter could be set to 2 to allow plotting of every other sample in the file (all of
the A channel data). Further, the Header parameter could be set to 1 in conjunction
with the abover Decimate setting to allow skipping of the first sample in the file
resulting in order to plot of all of the B channel data in the file.

Fit specifies that the plotted data should be curvefit to the specified order, ranging
from zero to five, using a least-squares regression technique. The curvefit data is
plotted atop the actual data in red. The correlation coefficient of the fit and the cur-
vefit equation are displayed in the graph window whenever this parameter is greater
than zero.
Development Package Software Manual 31

32
Data File indicates that name of the file containing the data to be plotted.

Radio Buttons. IEEE – When checked, indicates that each sample in the data file is
stored in 32-bit IEEE-754 floating-point format. When enabled, the Significant
Bits and Shifted fields are ignored.

TI – When checked, indicates that each sample in the data file is stored in 32-bit
TMS320 TI native floating-point format. When enabled, the Significant Bits and
Shifted fields are ignored. This is the default data mode.

Signed – When checked, indicates that each data sample in the data file is is signed
integer data. When enabled, the Significant Bits and Shifted fields are observed.

NOTE: When IEEE, TI and Signed are unchecked, the data is assumed to have
been stored in the data file as unsigned integer data.

XY – When checked, indicates that data samples have been stored in the data file as
X-Y (distance, amplitude) pairs rather than in the default data format. In the default
format, only the Y (amplitude) data is stored in the file and it is plotted against an
implied, incrementing “sample number” X. In the XY mode, samples are parsed
from the file and plotted in pairs. Therefore in this mode, half as many points are
plotted from the data file.

FFT – When checked, indicates that a Fast Fourier Transform should be applied to
the data in the data file prior to plotting.

File | Exit - exits the terminal emulator program.

FIGURE 5. Terminal emulator Window menu.
Development Package Software Manual

• Window | Clear Screen - clears the terminal emulation screen and resets the cur-
rent cursor position to the top left hand corner.

• Window | Reset - causes the terminal emulator to reset all internal stdio process-
ing and clear the screen. If processing is currently halted (via the File | stdio
Disabled command), it is reenabled. The Reset command is useful when the
terminal emulator needs to be initialized prior to running a new DSP application
on the target. This can become necessary because the emulator uses multi-char-
acter control codes to implement cursor movement and screen control function-
ality and it is possible to halt DSP processing (via the JTAG debugger interface)
in the middle of a stdio call which is processing a multi-character sequence. If
the program is not continued, this causes the terminal emulator to misinterpret
subsequent, new stdio activity. Terminal emulation should always be reset,
either via this menu entry or by calling the stdio_reset() function within
the new application, before new stdio activity is attempted.

• Window | stdio Disabled - a toggling command which allows the user to tempo-
rarily disable stdio emulation. This will cause the DSP program to halt at the
next stdio library call, and remain paused until stdio processing is again reen-
abled by selecting this menu entry. stdio activity processing is halted while the
menu entry is checked.

• Window | Always On Top - a toggling command which will cause the terminal
emulator to float above other windows on the desktop. This is useful when run-
ning stdio-based code from within the Code Composer environment, where the
terminal needs to be visible at all times. The terminal will remain atop other
windows when this entry is checked. Select the entry again to uncheck and
allow the terminal emulator window to be obscured by other windows.

• Window | Quiet Mode – Disables verbose error and diagnostic messages during
terminal execution.

DSP Menu

• DSP | Reset - causes the terminal emulator to momentarily assert the target’s
physical reset pin, bringing the target board into a cold-start, initialized condi-
tion.

• DSP | Interrupt - causes the terminal emulator to trigger a target mailbox inter-
rupt using the test code of 0x80 as the signal value. Helpful during testing of
target interrupt handlers.
Development Package Software Manual 33

34
Reload Menu

• Reload - Causes the terminal emulator to redownload and restart the last COFF
application previously selected with the File | COFF Download command.

Help Menu

• About - presents program copyright and version information plus information
pertaining to the use of Host resources by the target DSP board.

Terminal Emulator Command Line Switches. The terminal emulator also pro-
vides the following command line switches to further modify program behavior.
The switches must be supplied via the command line or within Windows shortcut
properties (see the Installation section for more information), and will override the
default behavior of the applet.

• -tX - address selector switch, which allows the user to force the terminal emula-
tor to interact with a specified target. This switch is particularly useful in multi-
board installations to create instances of the emualtor for targets other than tar-
get 0. See the Installation section for more information on multi-board installa-
tions. The X parameter specifies the logical target number with which to
communicate. NOTE: For single-board targets, specify target 0 for boards con-
nected via COM1 and target 1 for boards connected via COM2.

• -ffilename - address selector switch, which allows the user to force the terminal
emulator to download the specified file to the target DSP board, as soon as the
terminal emulator is loaded. This switch is particularly useful in situations
where the terminal emulator is “shelled to” from within other Host applications
(such as Codewright) to faciltate automatic execution of target applications
employing standard I/O.
Development Package Software Manual

The COFF File Downloader

The COFF downloader utility provides users with the capability to download and
execute COFF files generated by the C compiler or Hypersignal toolsets. This
allows users to distribute executable applications independent of the DSP develop-
ment tools.

FIGURE 6. The Coff File Downloader Applet

The COFF downloader is simple to use. Double click on the COFF Downloader
icon and the program will start and will open a small window with two menu
entries, File and Window. To download an application, click on File | Download.
This will present a file requester dialog box containing a list of suitable COFF files
(.OUT) which can be downloaded. Select the desired target executable and click
OK to proceed. Click Cancel to abort the download command without selecting a
filename.

Once a file is selected, the target will be reset-cycled (to restart its talker) and the
program will be downloaded and the application launched on the DSP. If any errors
are encountered during the download or the download fails to succeed for any rea-
son, an error message box will appear. Typical reasons for failure include improper
file selections (a nonexistent or non-COFF format file was selected for download)
or errors in hardware or software installation. If repeated errors are noted, proceed
to the Installation Troubleshooting section below.

The COFF downloader provides for automated downloads for use in situations
where a single application needs to be downloaded and run on the target each time
the system is brought up. This can be valuable when placed in the Windows Star-
tup Folder to automatically download a specific DSP program each time Windows
is restarted.

Q62 Users: Download supports downloading of .OUT or multi-processor .MPO
files. .MPO files provide a means of downloading separate .OUT files to multiple
processors simultaneously, which greatly simplifies the task of synchronizing exe-
cution in a multi-processor environment.
Development Package Software Manual 35

36

The File | Exit menu selection will terminate the download application.

COFF File Downloader Menu Commands . The following is a brief description
of commands available from the COFF Downloader menus:

File Menu

File | COFF Download - provides for COFF program downloads from within
the terminal emulator. When selected, a file requester dialog box is opened and
the pathname to the COFF filename to be downloaded is selected by the user.
Clicking “Open” in the file requester once a filename has been selected will
cause the requester to close and the file to be downloaded to the target and exe-
cuted. Clicking “Cancel” will abort the file selection and close the requester
with no download taking place.

NOTE: File | COFF Download physically resets the target DSP (in order to ini-
tiate the target Talker program) prior to the download. When using the terminal
emulator in conjunction with the Code Composer debugger, use Code Compos-
ers File | Load Program facility to download executable code to the target rather
than the terminal emulators download facility, since the Code Composer mecha-
nism does not physically reset the target during the download and is not reliant
on the target Talker to perform the download.

• File | DSP Reset - causes the terminal emulator to momentarily assert the tar-
get’s physical reset pin, bringing the target board into a cold-start, initialized
condition.

• File | Exit - exits the terminal emulator program.

Window Menu

• Window | Quiet Mode – Disables verbose error and diagnostic messages during
terminal execution.

• Window | About - presents program copyright and version information.
Development Package Software Manual

Reload Menu

• Reload - Causes the terminal emulator to redownload and restart the last COFF
application previously selected with the File | COFF Download command.

COFF File Downloader Command Line Switches. The COFF Downloader also
provides the following command line switches to further modify program behavior.
These switches must be used in Windows 95/NT shortcut icons (see the Installation
section for more information), and will override the same selection made in the
configuration utility.

• -tX - target number selector switch, which allows the user to force the terminal
emulator to interact with the specified target. This switch is particularly useful
in multi-board installations. See the Installation section for more information
on multi-board installations. The X parameter specifies the logical target num-
ber with which to communicate. For single-board targets, specify target 0 (zero)
for boards connected via com1 and target 1 (one) for boards connected via
com2.

• -q - force quiet mode switch, which causes the terminal emulator to omit non-
fatal warning messages. Fatal errors are still presented in message boxes.

• -dpathname - cause the downloader to automatically download the named file.
Complete path and filename must be given (as in
c:\sbc32cc\hello.out).

Development Package Software Manual 37

38
 Development Package Software Manual

The COFF File Dump Utility

The COFF downloader utility provides users with the capability to generate a report
detailing the memory usage of target DSP programs generated using the TI tool set.

FIGURE 7. The COFF Dump Utility

COFFDUMP.EXE parses through COFF files stored in files on the hard disk and
ascertains the complete memory sonsumption by the DSP program. Memory usage
for each of the sections defined in the applications command file are tabularized
and the results are written to the Windows NotePad scratch buffer. If desired, Not-
Pad can then be used to write the data to disk or to a printer.

FIGURE 8. COFF Dump utility output.
Development Package Software Manual 39

40
COFF Dump Utility Menu Commands . The following is a brief description of
commands available from the COFF Downloader menus:

File Menu

• File | Dump – Involes the standard Windows file selector window for COFF
output files (.OUT). Parses through selected file and writes diagnostic dump of
contents of executable image to NotePad scratch buffer.

• File | Exit - exits the dump utility program.

Window Menu

• Window | About - presents program copyright and version information.
Development Package Software Manual

The MPO Editor

The MPO Editor provides a means of editing the special configuration files used on
the Q62 to allow downloading of multiple COFF object files simultaneously. The
Terminal and Download applets for the Q62 understand the MPO file format and
are able to consume .MPO files as well as .OUT files as download arguments.
Attempting to download an MPO file from within Terminal or Download will cause
new code to be loaded onto and executed by all processors. This is in contrast to
the downloading a standard COFF .OUT file, which simply downloads and exe-
cutes code on processor A only.

FIGURE 9. The MPO Editor

The MPO Editor is simple to use. Double click on the MPO Editor icon and the
program will start, presenting a single window similar to the figure above. The
Filename edit box contains the name of the MPO file currently being edited. The
COFF Files list box contains the filenames of the executable .OUT files to be
downloaded to each of the processors on the DSP board.

Opening an Existing MPO File. To open an existing MPO file, double-click on
the Filename edit box. This will open a dialog box in which you may browse to the
directory containing the MPO file. Selecting an MPO file from within this dialog
will dismiss the dialog and will make the selected MPO file current.
Development Package Software Manual 41

42
FIGURE 10. MPOEditor "Open" Dialog box.

Creating a new MPO File . To create a new MPO file, simply type the complete
path specification to the new MPO file you wish to create into the Filename edit
box, then press Enter. Alternately, you may double-click the Filename edit box and
browse to the directory in which you wish to create the new MPO file and then type
the name of the MPO file to create into the File name edit box of the Open dialog
and finally press the Open button.

Changing the COFF File List. To change any entry in the list of COFF files to be
downloaded, double-click on the line in the COFF File list box corresponding to the
CPU which is to execute the new .OUT file. This will open a dialog box in which
you may browse to the directory containing the .OUT file to be downloaded to the
selected CPU.

FIGURE 11. COFF File list change dialog box.
Development Package Software Manual

Double clicking on a file in the list box within the Open dialog will replace the
selected line within the MPO editor COFF File list box with the selected file.

Saving MPO Editor Changes. Closing the MPO editor applet automatically saves
the current MPO Filename in the registry so that it is persistent from run to run of
the applet.

If the specified MPO file does not exist, it is created. Then, the names of the .OUT
files contained in the COFF Files list box are written into current MPO file. Any
previous contents of the MPO file are overwritten.

The Viewer Applet

Introduction. Viewer is a software debugging utility supplied with Innovative
Integration DSP boards. Viewer supports interactive execution of each of the DLL
functions supplied in the Zuma toolset, interactive display of all DLL allocated and
addressable memory structures in a variety of formats and other forms of low-level
DSP board control.

Viewer is useful during the DSP code development cycle, before a Host application
program has been written and debugged to deal with data flow between the DSP
and the Host PC.

Viewer is based on a public domain Windows Forth package, Win32For. Viewer
supports the full extensibility of Forth scripts may be written in the Forth language
to assist in the Host/DSP debugging effort.

Starting the Program . Viewer may be executed by changing into the II_BOARD
directory and executing the VIEWER.EXE program file. When invoked, the pro-
gram will open a single window, shown below.

FIGURE 12. Viewer main window
Development Package Software Manual 43

44
Opening the Target. Before attempting to communicate with the target processor,
you must first “open” the target device and driver. This is accomplished using the
open command.

FIGURE 13. Opening the target DSP

When the target is opened, strategic entries in the DLL cardinfo structure are read
and displayed. While Viewer provides access to all of the cardinfo elements, only
the most common ones are displayed during open.

Accessing Shared Memory. All of Innovatives bus-based DSP products provide
some sort of “shared memory”. On ISA bus boards, this is a fixed block of dual
ported memory, accessible by both the Host PC processor and the DSP processor.

On newer, PCI-based boards, the shared memory is actually Host PC memory allo-
cated by the board’s device driver as contiguous, page-locked memory suitable for
use as a “bus-mastering” target or source.

Regardless of the type of shared memory, Viewer provides a means of accessing it.
This can be very helpful during the development process, before your custom Host
program has been developed. Ultimately you must generate custom code for both
the Host and the target to provide the umbilical communications layer between the
DSP program running on the target board and your Host application program. But
in the interim, Viewer can be used to provide basic access to the shared memory
pool and limited diagnostics capabilities.
Development Package Software Manual

Dumping Shared Memory. One of the most common requirements is for a means
of viewing data transferred from the DSP to the Host via the bus during DSP target
code development. This can be particularly handy when dealing with bus-master-
ing cards because even when using a JTAG-based debugger (such as Code Com-
poser, included in our Developers Packages) it may not be possible to see the Host
memory targeted by the transfer.

For example, assume that you are attempting to bus master a packet of floating
point data from the target DSP to the host shared memory. You may wish to verify
that the data has been converted to IEEE format by the DSP properly and that the
full packet has been transferred. Viewer supports a wide variety of dumping com-
mands to make this easy.

FIGURE 14. Variants of Viewers dump command

Once data has been moved from the target DSP to the Host shared memory, you
may use one of Viewers dump commands to see the data in various formats. The
variants are

bmdump To display a range of bus master memory
Development Package Software Manual 45

46
dpdump To display a range of dual ported memory

dump To display a range of host memory (Viewer application local space)

Viewer may also be used to view resources located in the I/O space of the PC. The
variants are:

idump To display a range of the DSP board’s I/O space

odump To display a range of the DSP board’s operations register space
(PCI only)

iodump To display a range of host I/O space (Win95 only)

If the target Talker is running (after a Reset), Viewer allows you to view target
memory without moving its contents to the Host first. The commands are:

pdump To display target DSP program memory (Talker monitor must be
running)

ddump To display target DSP data memory (Talker monitor must be run-
ning)

Each of these commands is modal and selects the default memory region to be
accessed in all subsequent dump and plot commands. These spaces may be explic-
itly made active using the space mode commands:

program-space Selects target program memory region as “default” memory space

data-space Selects target data memory region as “default” memory space

bm-space Selects bus master memory region as “default” memory space

dp-space Selects dual port memory region as “default” memory space

memory-spaceSelects host PC memory region as “default” memory
space

i-space Selects DSP board I/O block as “default” memory space

op-space Selects target operation registers region as “default” memory space
Development Package Software Manual

io-space Selects Host PC I/O region as “default” memory space

hpi-space Selects Host PC I/O region as “default” memory space (C6x tar-
gets)

Dumping and plotting commands respect the current display format type, set by
one of the format mode commands below.

signed Sets display format to signed integer

unsigned Sets the display format to unsigned integer

floating Sets the display format to TI 32-bit floating-point format

ieee Sets the display format to IEEE-754 32-bit floating point format.

These mode commands remain in effect until explicitly changed. The default mode
is unsigned.

Modifying Shared Memory. The currently active memory region may be modi-
fied using a number of Viewer commands, listed below. These commands support
clearing or filling a region of memory or altering a single cell of memory.

t! Stores a value into specified target memory cell

t@ Retreives a value from specified target memory cell

tf! Stores a floating point number into specified target memory cell.

tf@ Retrieves a floating point number from specified target memory
cell.

tfill Fills a region of target memory with a seed value

terase Clears a region of target memory to zeros.

tdump To display a region of memory in the “current” memory space.

Each of the se target memory operators deals with the current default memory space
and data type.
Development Package Software Manual 47

48
Plotting Shared Memory. Data may be plotted rather than dumped in numeric for-
mat. Plotting is also modal and is controlled by the same display formatting com-
mands listed above. To plot a data range, use the plot command, as shown below.

0 100 plot To plot the data range starting at offset 0 in the current
memory region using the current display format .

FIGURE 15. Viewers plot window

Plots, like dumps are automatically performed out of the currently selected memory
region using the current data type.

Generic View DLL functions. The functions tabularized below may be executed
interactively within Viewer. The parameters to each function must be pushed onto
the stack in the order shown prior to invoking the function. The parameters col-
umn below lists the required parameters for each function. The dash in the parame-
ter description denates where the function name should be substituted when
executing the command.
Development Package Software Manual

TABLE 1. Generic DLL Function List

Function Parameters Description
target_open target – f Opens driver for specfied target DSP

board. Returns boolean.
target_close target – f Closes driver for specfied target DSP

board. Returns boolean
target_cardinfo target - a Returns address of cardinfo structure for

target.
iicoffld string target handle - f Loads a COFF executable file onto target

DSP
host_interrupt_enable target - f Enables a previously installed virtual

interrupt handler.
host_interrupt_disable target - f Disables a previously enabled virtual

interrupt handler
host_interrupt_install target fcn - Installs a virtual interrupt handler
host_interrupt_deinstall target - Removes a virtual interrupt handler.
target_reset target - Physically asserts reset on the target DSP

board.
target_run target - Deasserts reset on the target DSP board
target_outport target port value - Outputs a value to specified DSP board I/

O port address
target_inport target port – n Inputs a value from specified DSP board

I/O port
target_opreg_outport target port value - Outputs a value to specified DSP board

operation port address
target_opreg_inport target port – value Inputs a value from specified DSP board

operation port
target_control target bit state - Modifies a bit in the control register of

the target DSP board
read_mailbox target box - value Reads the specified mailbox of the target

DSP board
write_mailbox target box value - Writes to the specified mailbox of the tar-

get DSP board.
check_outbox target box - f Interrogates the specified output mailbox

status
check_inbox target box – f Interrogates the specified input mailbox

status
read_mb_terminate target box key mode – f Reads the specified input mailbox, if full
write_mb_terminate target box value mode –

f
Writes to the specified output mailbox, if
empty

clear_mailboxes target Clears all mailboxes to empty state
mailbox_interrupt target value - Interrupts the target DSP after writing

value to special mailbox
mailbox_interrupt_ack target - Acknowledges target to Host interrupt,

returns special mailbox contents
target_key target – key Reads terminal mailbox, returns an 8-bit

contents
target_emit target value - Writes 8-bit value to terminal mailbox
target_Tx target value - Writes 32-bit value to terminal mailbox
target_Rx target target – key Reads 32-bit value from terminal mailbox
target_get_semaphore semaphore target - Gains ownership of specfied target sema-

phore
Development Package Software Manual 49

50
Viewer Command Reference. Viewer is capable of operating on a variety of
memory regions. The commands below may be used to enable display or modifica-
tion of specific memory regions using the target memory operator commands.
These commands are modal and remain in effect until explicitly changed.

TABLE 2. Viewer “target” memory selection commands

target_interrupt target - Interrupts target DSP board
target_request_semapho
re

target semaphore - Requests ownership of specified target
semaphore

target_own_semaphore target semaphore - Interrogates ownership status of specified
semaphore

target_release_semaphor
e

target semaphore - Relinquishes control of specified sema-
phore

target_check target - f Interrogates for Talker running on target
start_app target - Starts a previously downloaded target

application program
start_talker target - f Starts the target Talker executing.
target_revision target - f Returns the revision of the target Talker
talker_fetch target addr – n Uses the Talker to fetch contents of speci-

fied target memory address
talker_store target addr value - Uses Talker to store value to specified tar-

get memory address
talker_read_memory target page addr – n Uses the Talker to fetch contents of speci-

fied target memory address
talker_store target page addr value - Uses Talker to store value to specified tar-

get memory address
talker_download target addr cnt - Downloads a block of data or code to tar-

get DSP
talker_launch target addr - Launches downloaded application at boot

vector address
talker_resume target - Resumes execution after suspended by

Talker (not available all targets)
talker_registers target - Returns Talker register save address on

target
target_slow target - Changes bus control to permit safe

FLASH ROM access
target_fast target - Changes bus control to support fast target

code execution
talker_flash_sector_eras
e

target sector - Erases specified sector in FLASH ROM
on target

talker_flash_init target - Initializes FLASH ROM on target.
talker_flash_offset target offset - Specifies memory offset of base of

FLASH ROM on target

Function Parameters Description
io-space -- Makes host I/O space the “current” target

memory space
Development Package Software Manual

Viewer supports storing and fetching from the “currently-selected” target memory
region. The commands below may be used to modify the currently memory region.
These commands are subject to the current target memory region mode, selected
above.

memory-space -- Makes host memory space the “current”
target memory space. All addresses are
relative to the base of Viewers executable
image in memory

bm-space -- Makes host bus master memory space the
“current” target memory space. All
addresses are relative to the base of the
page-locked bus master memory block.

dpram-space -- Makes shared DSP/Host dual-port mem-
ory the “current” target memory space.
All addresses are relative to the base of
the shared memory pool.

o-space -- Makes DSP card operations register space
the “current” target memory space. All
target memory addresses are specified
relative to the beginning of this region.

i-space -- Makes DSP card I/O space the “current”
target memory space. All target memory
addresses are specified relative to the
beginning of this region.

program-space -- Makes DSP card program memory the
“current” target memory space. All target
memory addresses are specified relative
to the beginning of this region.

data-space -- Makes DSP card data memory space the
“current” target memory space. All target
memory addresses are specified relative
to the beginning of this region.

i-space -- Makes DSP card I/O space the “current”
target memory space. All target memory
addresses are specified relative to the
beginning of this region.

hpi-space -- Makes DSP card Host Port Interface
space the “current” target memory space.
All target memory addresses are specified
relative to the beginning of this region
(C6x targets only)
Development Package Software Manual 51

52
TABLE 3. Viewer “target” memory operators

Viewer supports dumping ranges of target memory in text form and graphically.
The commands below are used to display ranges of target memory.

Function Parameters Description
t! n a -- Pronounced “t store”. Stores integer n

into address a in target memory. For
example 0x100 0x1000 t! stores
100h into target memory address 1000h.

t@ a – n Fetches integer n from address a in tar-
get memory. For example 0x1000 t@
returns contents of target memory address
1000h onto stack.

tf! a –

r -- (fp stack)

Stores floating pt r into address a in tar-
get memory. For example

1.23 0x1000 tf! stores floating
point 1.23 into target memory address
1000h

tf@ a –

-- r (fp stack)

Fetches floating pt r from address a in
target memory. For example 0x1000

tf@ returns floating pt contents of target

memory address 1000h.
tdump a n -- Dumps n cells of the current memory

region starting at address a according to
current dump mode (ie signed). For

example unsigned 0 100 ddump

shows 100 cells of target memory starting
at 0000h as unsigned integers.

tfill a n c -- Fills n cells of target memory starting at
a with integer c . For example: 0 100

0x1234 tfill fills 100 target mem-

ory cells starting at 0000h with value
1234h .

terase a n -- Zeroes n cells of target memory starting
at a . For example
0 1000 derase erases 1000 cells of

target memory starting at offset n in the
current memory space.
Development Package Software Manual

TABLE 4. Target memory display operators

The dump and plot commands operate on the current target memory region. The
commands below modify how data is interpreted during the data display operation.

TABLE 5. TDUMP mode selector commands

Function Parameters Description
tdump a n -- Dumps n cells of target memory starting

at offset a interpreted according to cur-
rent dump mode. For example 0 100

DPDUMP shows 100 16-bit cells of dual

port memory starting at D000:0000h
plot a n -- Plots n cells of memory starting at

address a according to current dump
mode (ie signed) and active memory

space. Requires EasyPlot in working
directory. For example SIGNED 0 100

PLOT graphs 100 cells of memory start-

ing at 0000h as unsigned integers.

Function Parameters Description
signed -- Subsequent DUMPs/PLOTs show signed

values.
unsigned -- Subsequent DUMPs/PLOTs show

unsigned values.
floating -- Subsequent DUMPs/PLOTs show TI

floating point values.
ieee -- Subsequent DUMPs/PLOTs show IEEE

floating point values.
Development Package Software Manual 53

54
The commands below are shorthand convienence forms of the dump and target
memory access commands. They automatically select a target memory region and
perform a target memory accesses using a single, short-form command. Note: All
addresses are specified as offsets into the selected memory region.

TABLE 6. Shorthand memory dump commands

Viewer maintains two independent user-accessible stacks onto which parameters
are placed for consumption by Viewer commands.

Function Parameters Description
iodump a n -- Makes host I/O space current and dumps the specified range.
idump a n -- Makes DSP card I/O space current and dumps the specified

range.
odump a n -- Makes DSP card operations space current and dumps the speci-

fied range.
bmdump a n -- Makes host bus master memory space current and dumps the

specified range.
dpdump a n -- Makes dual port memory space current and dumps the specified

range.
pdump a n -- Makes target program memory space current and dumps the

specified range.
ddump a n -- Makes target data memory space current and dumps the speci-

fied range.
hpidump a n -- Makes target HPI memory space current and dumps the speci-

fied range.
p@ a – n Makes DSP program memory current and fetches from it.
p! n a -- Makes DSP program memory current and stores into it.
d@ a – n Makes DSP data memory current and fetches from it.
d! n a -- Makes DSP data memory current and stores into it.
i@ a – n Makes DSP board I/O space current and fetches from it.
i! n a -- Makes DSP board I/O space current and stores into it.
o@ a – n Makes DSP board operations register space current and fetches

from it.
o! n a -- Makes DSP board operations register space current and stores

into it.
bm@ a – n Makes bus master memory space current and fetches from it.
bm! n a -- Makes bus master memory space current and stores into it.
dp@ a – n Makes dual port memory space current and fetches from it.
dp! n a -- Makes dual port memory space current and stores into it.
io@ a – n Makes Host I/O space current and fetches from it. 32-bit form
io! n a -- Makes Host I/O space current and stores into it.
ioh@ a – n Makes Host I/O space current and fetches from it. 16-bit form
ioh! n a -- Makes Host I/O space current and stores into it.
ioc@ a – n Makes Host I/O space current and fetches from it. 8-bit form
ioc! n a -- Makes Host I/O space current and stores into it.
hpi@ a – n Makes Target HPI space current and fetches from it.
hpi! n a -- Makes Target HPI space current and stores into it.
Development Package Software Manual

The parameter stack is a 32-bit wide stack used to contain addresses and integer
parameters to and results from functions.

The floating point stack is used to hold used to hold floating point parameters to
and results from Viewer functions. Floating point arithmetic takes place directly on
the 8087 numeric stack. Viewer interprets numbers as reals when an 'e' is embed-
ded in a literal number. Parameters on the fp stack are denoted below the parameter
stack notation in the tables below.

TABLE 7. Viewer math and binary operators

The commands below support Viewer dictionary display and modification.

TABLE 8. Viewer dictionary commands

Function Parameters Description
+ n1 n2 – n Adds n2 to n1 leaving the result n . For example: 10 20 +

. adds 10 and 20 and prints the result.
- n1 n2 – n Subtracts n2 from n1 leaving the result n . For example: 20 10

- . subtracts 10 from 20 and prints the result.
* n1 n2 – n Multiplies n1 by n2 leaving the result n.
/ n1 n2 – n Divides n1 by n2 leaving the result n.
f+ --

r1 r2 – r

Adds r2 to r1 leaving the floating point result r . For example:
10.0 20.0 f+ f. adds 10 and 20 and prints the result.

f- --

r1 r2 – n

Subtracts n2 from n1 leaving the result n . For example: 20 10

- . subtracts 10 from 20 and prints the result.

f* --

r1 r2 – n

Multiplies r1 by r2 leaving the result r.

f/ --

r1 r2 – n

Divides r1 by r2 leaving the result r.

and n1 n2 – n Bitwise ANDs n1 and n2 leaving result n.
or n1 n2 – n Bitwise ORs n1 and n2 leaving result n.
xor n1 n2 – n Bitwise XORs n1 and n2 leaving result n

Function Parameters Description
words -- Displays the names of all available Viewer commands.
empty -- Empties the Viewer dictionary of all user-defined commands.
Development Package Software Manual 55

56
The commands below affect global Viewer operation.

TABLE 9. Viewer system commands

TABLE 10. Viewer system commands

The following commands are convienient Viewer command shortcuts to common
DLL functions.

TABLE 11. Target DLL function shortcuts

: -- wordname Begins definition of a new Viewer command (called a word).
; -- Terminates definition of a new word.

Function Parameters Description
bye -- Terminates Viewer, returns to the operating system.
z -- filename Invokes Codewright editor on specified filename
dir -- dirspec Displays the specified directory
chdir -- dirspec Changes to the specified directory

Function Parameters Description
.s -- Non-destructively prints entire parameter stack contents.
f.s -- Non-destructively prints entire floating point stack contents.
. n -- Prints the integer on top of the parameter stack.
f. --

r --

Prints the real number on top of the floating point stack.

decimal -- Changes default I/O conversion radix to decimal.
hex -- Changes default I/O conversion radix to hexidecimal.

Numeric literals prefixed with 0x are interpreted in hexideci-
mal, regardless of current radix.

bye -- Terminates Viewer, returns to the operating system.
z -- filename Invokes Codewright editor on specified filename

Function Parameters Description
+reset -- Places the target in the reset state
-reset -- Removes the target from the reset state
reset -- Reset-cycles the DSP board
run -- filename Downloads and runs specified COFF .OUT file
break -- Fires a target interrupt
open n -- Opens the specified target DSP device driver
Development Package Software Manual

close -- Closes the currently open DSP device driver
inbox? slot – f Reports status of specified input mailbox
outbox? slot – f Reports status of specified output mailbox
?mailbox@ slot – n f Reads input mailbox, if full. Returns value read and status.
?mailbox! n slot -- Writes output mailbox, if empty. Returns status.
.boxes -- Destructively dumps all input and output mailboxes
Development Package Software Manual 57

58
 Development Package Software Manual

CHAPTER 4 Developing Target Code
Introduction

The Innovative Integration Zuma Toolset allows users of II DSP processor boards
to develop complete executable applications suitable for use on the target platform.
The environment suite consists of the TI Optimizing C Compiler, Assembler, and
Linker, the Code Composer debugger as well as II’s custom Windows applets (such
as the TERMINAL.EXE terminal emulator) plus the Codewright code authoring
environment.

Codewight is the default package is used to automate executable build operations
within Innovatives Zuma Toolsets, simplifying the edit-compile-test cycle. Source
is edited, compiled, and built within Codewright, then downloaded to the target and
tested within either the Code Composer debugger or via the Zuma terminal emula-
tor.

On C6x platforms, such as Innovatives M6x, SBC6x and Quatr6x, Code Composer
Studio may be used instead of Codewright for both code authoring and code debug-
ging. Details of constructing projects for use on Innovative DSP platforms using
Studio are provided in this chapter.
Development Package Software Manual 59

Developing Target Code

60
Do not confuse the creation of target applications (code running on the target DSP
processor) with the creation of host applications (code running on the host plat-
form). The TI tools generate code for the TI DSP processors, and are a separate
toolset from that needed to create applications for the host platform (which would
consist of some native compiler for the host processor, such as Microsoft’s Visual
C++ or Borland Builder C++ for IBM compatibles). To create a completely turn-
key application with custom target and host software, two programs must be written
for two separate compilers. While II supports the use of Microsoft C/C++ for gen-
eration of host applications under Windows with sample applications and libraries,
we do not supply the host tools as part of the Development Environment. For more
information on creating host applications, see the section in this manual on host
code development.

This section supplies information on the use of the development environment in
creating custom or semicustom target DSP software. It is not intended as a primer
on the C language. For information on C language basics, consult one of the C
primer books available at your local bookstore. The definitive reference to the C
language is The C Programming Language, by B. Kernighan and D. Ritchie (Pren-
tice Hall. Englewood Cliffs, NJ. 1988).

Components of Target Code (.c, .asm, .cmd)

In general, DSP applications written in TI C require at least two files: a .c file (or
“source” file) containing the C source code for the application, and a .cmd file (or
“linker command” file) which contains the target-specific build data needed by the
linker. There may also be one or more .asm assembler source files, if the user has
coded any portions of the application in assembly language.

Edit-Compile-Test Cycle using Codewright
Development Package Software Manual

A Simple Codewright Project
Nearly every computer programming effort can be broken down into a three step
cycle commonly known as the edit-compile-test cycle. Each iteration of the cycle
involves editing the source (either to create the original code or modify existing
code), followed by compiling (which compiles the source and creates, or builds, the
executable object file), and finally downloading and testing the result to see if it
functions in the desired fashion. In the II development system, these stages are
accomplished within the Codewright editor and Code Composer debugger pro-
grams. Codewright supports the editing and compilation stages, and Code Com-
poser allows the executable result to be downloaded and tested on the target
hardware.

Codewright is a full-featured programmer’s editor whose functionality has been
extended using a custom DLL to allow the TI compiler, assembler, and linker to be
called from within the editor, making the environment more user-friendly than the
basic command line interface which comes standard with the TI tools.

A Simple Codewright Project

The following sequence illustrates the creation of a project to build the Hello
World! program from within Codewright.

First, start Codewright. Select Project | New from the Project menu and you will
see the folowing dialog:
Development Package Software Manual 61

Developing Target Code

62
FIGURE 16. Creating a new project in Codewright

Browse to the directory in which you would like to create the new project (your
working directory) and then type the name of the new project. In this example, the
working directory is c:\seagate and the project name is hello.pjt. In the standard
developers package, you could browse into the %II_BOARD%\EXAMPLES\TAR-
GET directory (Note: Substitute actual Zuma root directory for %II_BOARD%).

Next Codewright will open the Add Files dialog. Add the HELLO.C and the auto-
matically-created HELLO.MKI files to the project.
Development Package Software Manual

A Simple Codewright Project
FIGURE 17. Adding files to a Codewright project

If you do not add a command file to the project, the generic.cmd file located in
the II_BOARD directory will be assumed. That is, the memory map for the target
DSP specified in the generic.cmd file will be used to link the project output
file. If you do include a command file in the project, it will override the settings in
the generic.cmd file in the II_BOARD directory.

When you have finished adding files, click OK.
Development Package Software Manual 63

Developing Target Code

64
Next, you may optionally open the files in the project by double-clicking on their
names within the Project window.

FIGURE 18. Codewright Project Window.

Now, to build the hello.out file, simply click on the Build icon on the Codewright
toolbar. Compiler progress is shown in the Output window:
Development Package Software Manual

A Simple Codewright Project
FIGURE 19. Codewright compiler progress in output window

 If errors are encountered in one or more source files, they are listed in the output
window and you may vist and repair each error by either clicking on each error in
the Output window or by clicking the Err icon on the Codewright toolbar.

Automatic makefile creation

When a project is created, opened, modified, built or rebuilt, the dependency DLL
automatically generates a project makefile (named <project file>.mk,
located in the project directory) which is capable of rebuilding the project’s output
file from its components. An example makefile is shown below.

#

Innovative Integration, Inc
Development Package Software Manual 65

Developing Target Code

66
Auto-generated makefile

#

#

Clear suffix list & use a new one

#

.SUFFIXES:

.SUFFIXES: .out .obj .c .asm .cmd .lib

#

Macros

#

RESPONSE = Log.rsp

CMD = ..\..\generic.cmd

#

Generic tools file for *.MAK

#

#

Macros

#

ASM = asm30

ASM_ARGS = -v30 -s

CC = cl30

CC_ARGS = -g -mn -v30 -q -x2 -o2

LNK = lnk30

LNK_ARGS = -c -stack 0x800 -heap 0x400 -e c_int00

AR = ar30

AR_ARGS = -r

LIBS = -l stdio.lib -l periph.lib -l dsp.lib -l rts30.lib

DEBUGGER = c:\composer\cc_mc4xw.exe

EXECUTE = terminal.exe

Uncomment to explicitly set output object file

OUTPUT = filename.out

OUTPUT_BASE = Log

OUTPUT = Log.out

#

Files for project

#

MAKEDEPSRC_ASM = ..\..\vectors.asm
Development Package Software Manual

A Simple Codewright Project
MAKEDEPSRC = log.c scale.c scan.c solve.c

#

Targets and dependencies

#

build: $(OUTPUT)

log.obj: log.c ..\command.h dau.h log.mki $(FRC)

scale.obj: scale.c dau.h log.mki $(FRC)

scan.obj: scan.c ..\..\INCLUDE\TARGET\periph.h

..\..\INCLUDE\TARGET\stdio.h\

dau.h log.mki $(FRC)

solve.obj: solve.c ..\..\INCLUDE\TARGET\dsp.h

..\..\INCLUDE\TARGET\periph.h\

..\..\INCLUDE\TARGET\stdio.h dau.h log.mki $(FRC)

..\..\vectors.obj: ..\..\vectors.asm log.mki $(FRC)

rebuild:

$(MAKE) build FRC=force_rebuild -f Log.mk

force_rebuild:

#

Build rules

#

$(OUTPUT_BASE).out : $(MAKEDEPSRC:.c=.obj)

$(MAKEDEPSRC_ASM:.asm=.obj)\

 $(CMD)

$(LNK) -o $@ $(RESPONSE)

$(OUTPUT_BASE).lib : $(MAKEDEPSRC:.c=.obj)

$(MAKEDEPSRC_ASM:.asm=.obj)

!$(AR) $(AR_ARGS) $@ $?

Inference rules...

.c.obj:

 $(CC) $(CC_ARGS) -fr $(<D) $<

.asm.obj:

 $(ASM) $(ASM_ARGS) $<

FIGURE 20. An example of an auto-generated makefile
Development Package Software Manual 67

Developing Target Code

68
This file is automatically submitted to the make facility whenever you click on
build or rebuild within Codewright. The make facility automatically constructs the
output file by recompiling the out-of-date source files including the dependencies
contained within those source files.

Rebuilding a Project

It is sometimes necessary to force a complete rebuild of an output file manually,
such as when you change optimization levels within a project’s mki file. To force a
project rebuild, select Project | Rebuild from Codewright menu bar.

Running the Target Executable

The hello program is very simple, only printing the single line “Hello, World” to
the terminal emulator before waiting for a key and exiting. Scroll down the source
file by using cursor down until you reach the call to printf(), which looks like
the following:

printf("Hello, World\n");

Change the output string to read “Hello, Brave New World\n”. You can
now compile the new version by executing Build from the Project menu (or by
clicking on its toolbar icon). This causes Codewright to start the compiler, which
produces an assembly language output. The compiler then automatically starts the
assembler, which produces a .obj output file (hello.obj). Codewright then
involes the TI Linker using the generic.cmd file, which is located in the root
board directory. This rebuilds the executable file using the newly revised
hello.obj . If no errors were encountered, this process creates the download-
able COFF file hello.out, which can be run on the target. At this point, the pro-
gram may be run using the Terminal Emulator applet, which may be automatically
invoked from within Codewright using the Project | Execute menu item. The pro-
gram runs and outputs the message “Hello, Brave New World” to the terminal emu-
lator window.

If errors are encountered in the process, Codewright detects them and places them
in the Output window. If the error occurred in the compiler or assembler (as in a C
Development Package Software Manual

Anatomy of a Target Program
syntax error), the cursor may be moved to the offending line by simply double-
clicking on the error line within the output window, and the error message will be
displayed in the Codewright status bar. If the linker returns a build error, the output
window shows the error file. From this information, the linker failure can be deter-
mined and corrected. For example, if a function name in a call is misspelled, the
linker will fail to resolve the reference during link time and will error out. This
error will be displayed on the screen in the Output window.

This outlines the basics of how to recompile the existing sample programs. The
following section explains why the program is structured the way it is and what
function each component is performing.

Anatomy of a Target Program

While not providing much in the way of functionality, the hello program does
demonstrate the code sequence necessary to properly initialization the target. The
exact coding, however, is very specific to the II C Development Environment and
target boards and is explained in this section in order to acquaint developers with
the basic syntax of a typical application program.

Here we examine the SBC31 version of the hello program. Although the source
is not necessarily identical to that of hello for the other targets, it is typical of the
overall structure of the typical application program designed under the develop-
ment environment.

/*

HELLO.C

Classic K&R Hello program.

*/

#include "stdio.h"

#include "periph.h"

main()

{

int key;

enable_cache();

enable_monitor();

enable_interrupts();
Development Package Software Manual 69

Developing Target Code

70
clrscr();

printf("Hello World!\n");

do

{

key = getchar();

putchar(key);

}

while(key != ESC);

monitor();

}

The first two lines of the program are #include statements which include the header
files for the peripheral and standard I/O libraries. These include prototypes for all
the library routines as well as variable definitions and #define statements for the
peripheral memory-mapping addresses. These #defines are especially important
for those who wish to perform direct peripheral access, rather than using the periph-
eral libraries.

The call to enable_cache() enables the internal CPU cache. Though HELLO.C is
certainly not a performance application, The next line sets the MHZ global variable
to the appropriate processor speed for this card. Properly setting this variable is
necessary since the library routines which handle the timers depend on having the
correct processor speed available so that the timer period registers can be set cor-
rectly. Although the timers are not used in this application, it is good form to
include this line in all PC44 programs.

Next, global interrupts are enabled with a call to enable_interrupts(). This
routine merely sets the global interrupt enable bit in the ‘C44 status register, which
allows any interrupts not locally masked to become pending on the CPU.

Once interrupts are globally enabled, the monitor interrupt is unmasked using
enable_monitor(). This routine glabally enables interrupts, permitting serial
port interrupts to propogate hrough to the DSP chip.

The next two lines perform the standard I/O function of the program, clearing the
terminal emulation screen and printing “Hello, World”. These two lines are where
custom code should be inserted.
Development Package Software Manual

Anatomy of a Target Program
The following getchar() call simply echoes keys typed at the terminal emulator
back to the terminal display. This routine is also part of the standard I/O library.
The program effectively terminates here, except that interrupts are still active and
interrupt handlers (if they had been installed) would still execute properly.

As is shown, the hello program is very simple, but it exhibits the basic function-
ality needed to properly start on the CPU, as well as the initialization needed to
interact with Code Composer and the terminal emulator properly in the develop-
ment environment.

Use of Library Code

Library routines can be compiled and linked into your custom software simply by
making the appropriate call in the source and adding the appropriate library to the
linker command file. Refer to the library reference in this manual for library loca-
tion information on each function.

In general, user software needs to #include the relevant library header file in source
code. The header files define prototypes for all library functions as well as defini-
tions for various data structures used by the library functions. The file stdio.h
should be included by programs using the standard I/O library, and the file periph.h
should be included if a program uses functions in the peripheral library. The func-
tion definitions in the peripheral library reference note which library a particular
function lives in, as well as the header file which should be included for that func-
tion.

Compiling/Assembling/Linking Outside Codewright

Under certain circumstances, it may not be possible to use Codewright’s macro def-
initions to compile inside the editor. If the user has a large number of TSR pro-
grams or device drivers loaded under DOS, there may not be enough DOS memory
available for Codewright to shell off to the compiler, assembler, or linker. If this
situation comes up, the batch programs normally used by Codewright to perform
compilation, assembly, and linking may be executed directly from DOS. COM-
PILE.BAT, ASSEMBLE.BAT, and LINK.BAT are provided in the
%II_BOARD% directory and may be executed by typing their names followed by
the source file on which they are to operate. For example, the file mycode.c can
be compiled by typing
Development Package Software Manual 71

Developing Target Code

72
compile mycode

at the DOS prompt. This causes the COMPILE.BAT script to start, which runs the
compiler and generates the file mycode.obj, assuming no errors occurred. The
COMPILE.BAT script also searches for the file mycode.cmd in the current direc-
tory. If the linker command file is found, then the linker is automatically run and
the entire executable linked. If the command file is not found, processing stops
with the generation of mycode.obj.

Assembly source (mycode.asm) may be assembled by typing

assemble mycode

where the assembler is called and an object file generated.

Linking can also be performed. In this case the input file is not source code, but a
linker command file (mycode.cmd):

link mycode

This line causes the linker to build the executable mycode.out, again assuming
no errors have occurred during the process. Also note that the COMPILE.BAT
script will automatically link the executable if a linker command file of the same
name exists.

In all cases, if any errors occur, an error file (mycode.err) is generated by the tools.
It contains the full console output of each of the tools, and any error generated by
any tool will be recorded in this file.

Compiling without a Project

Occasionally, during program development is is useful to generate and compile
code without constructing a project – just to verify proper syntax, etc. When com-
piling or assembling programs in Codewright without an open project, the default
compiler/assembler command lines and arguments are derived from the
generic.mki file in the II_BOARD directory. Therefore, to compile or assem-
ble a single file, simply open the file and click on the Compile button on the tool-
bar. It will be built using the switches specified in generic.mki.
Development Package Software Manual

The Next Step: Developing Custom Code
Building Libraries

The makefile generated by the dependency DLL is capable of building either exe-
cutable targets or linker-compatible libraries. By default, the .mki file for a project
does not specify a name for the target output file. The default target output file
name is, therefore, constructed from the base of the project name plus the .out
extender. For example, if a new project called EXAMPLE.PJT is created, the
default name for the output file would be EXAMPLE.OUT. This can be overridden
in the .mki file by un-commenting the line containing OUTPUT = macro and spec-
ifying the desired target filename on that line.

If the name of the newly-specified output file has an .out extender, the target is
assumed to be an executable and the makefile will attempt to link the executable
during a build operation. However, if the target file is a library file with the .lib
extension, the makefile will use the archiver tool to add rebuilt components of the
project to the library file specified by the OUTPUT = macro. This property can be
very helpful when building and maintaining libraries.

Whenever changing the default OUTPUT = macro within an mki file, be sure to
reconstruct the project makefile by executing Project | Makefile within Codewright.

The Next Step: Developing Custom Code

In building custom code for an application, II recommends that you begin with one
of the sample programs as an example, extending it to serve the exact needs of the
particular job. Since each of the example programs illustrates a basic data acquisi-
tion or DSP task integrated into the target hardware, it should be fairly straightfor-
ward to find an example which roughly approximates the basic operation of the
application. For example, if the task calls for digital recording of analog informa-
tion, look to echo or loopback. If the task involves filtering, fir would be a
good starting point. And if the application needs to pass data to/from the host pro-
cessor, dualport should be studied carefully. Familiarize yourself with the sam-
Development Package Software Manual 73

Developing Target Code

74
ple programs: they should provide the skeleton for the fully custom application, and
ease a lot of the target integration work by providing hooks into the peripheral
libraries and devices themselves.

Edit-Compile-Test Cycle using Code Composer
Studio

Nearly every computer programming effort can be broken down into a three step
cycle commonly known as the edit-compile-test cycle. Each iteration of the cycle
involves editing the source (either to create the original code or modify existing
code), followed by compiling (which compiles the source and creates, or builds, the
executable object file), and finally downloading and testing the result to see if it
functions in the desired fashion.

When using Studio, these stages are accomplished entirely within the Studio inte-
grated. The project features of Studio support the project and component file edit-
ing and compilation stages, and Code Composer allows the executable result to be
downloaded and tested on the target hardware.

A Simple Studio Project

The following sequence illustrates the creation of a project to build the Hello
World! program from within Studio.

First, start Studio. Select Project | New from the Project menu and you will see the
folowing dialog:
Development Package Software Manual

A Simple Studio Project
FIGURE 21. Creating a new project in Studio

Browse to the directory in which you would like to create the new project (your
working directory) and then type the name of the new project. In this example, the
working directory is c:\ti\bin and the project name is hello.mak. In the standard
developers package, you could browse into the %II_BOARD%\EXAMPLES\TAR-
GET directory.

Next open the Project | Add Files to Project dialog. Add the HELLO.C and the
GENERIC.CMD files to the project.
Development Package Software Manual 75

Developing Target Code

76
FIGURE 22. Adding files to a Studio project

It is imperative that you add an appropriate command file to the Studio project.
The generic.cmd command file describes the memory map of the target hardware,
without which the linker will be unable to place executable sections into appropri-
ate memory regions for debugging. That is, the memory map for the target DSP
specified in the generic.cmd file will be used to link the project output file. If
you wish, you may copy the contents of the generic.cmd file (located in the root of
the Zuma toolset) into your working directory, rename it appropriately and add the
modified cmd file to your project instead.

Do not add any library files directly into the project. Rather, manually type the
desired libraries needed to link the project into the Project | Options | Linker tab
when instructed to do so later within this chapter.

When you have finished adding files, click OK.

Next, you may optionally open the files in the project by double-clicking on their
names within the Project window.
Development Package Software Manual

A Simple Studio Project
FIGURE 23. Studio Project Window.

Next, you must configure the project compiler settings so that when Hello.c is com-
piled, the appropriate memory model and switches are used. Click on Project |
Options to open the Build Options dialog then click on the Compiler Tab to show
the current compiler options. Configure the compiler to use the following settings:

Aggregate Data and Calls are far (-ml2 memory model)

Next, click on the Assembler Tab.
Development Package Software Manual 77

Developing Target Code

78
Configure the Assembler to generate Big Endian target code, to make all symbols
global and to enable Symbolic Debug Information

Finally, click on the Linker Tab
Development Package Software Manual

A Simple Studio Project
Add stdio.lib; periph.lib; dsp.lib; and rts6201le.lib into the Include Libraries edit
box (in that order). Enable Exhaustively Read Libraries. Set the Heap size to
0x10000 bytes and the stack size to 0x1000 bytes.

FIGURE 24. Studio compiler progress in output window

If errors are encountered in one or more source files, they are listed in the output
window and you may vist and repair each error by either clicking on each error in
the Output window.

Automatic makefile creation

When a project is created, opened, modified, built or rebuilt, the Studio dependency
generator automatically generates a project makefile (named <project
file>.mak, located in the project directory) which is capable of rebuilding the
project’s output file from its components.

This file is automatically submitted to the internal make facility whenever you click
on build or rebuild within Studio. The make facility automatically constructs the
output file by recompiling the out-of-date source files including the dependencies
contained within those source files.

Rebuilding a Project

It is sometimes necessary to force a complete rebuild of an output file manually,
such as when you change optimization levels within a project. To force a project
rebuild, select Project | Build All from the Studio menu bar.

Running the Target Executable

The hello program is very simple, only printing the single line “Hello, World” to
the terminal emulator before waiting for a key and exiting. Scroll down the source
Development Package Software Manual 79

Developing Target Code

80
file by using cursor down until you reach the call to printf(), which looks like
the following:

printf("Hello, World\n");

Change the output string to read “Hello, Brave New World\n”. You can
now compile the new version by executing Build from the Project menu (or by
clicking on its toolbar icon). This causes Studio to start the compiler, which pro-
duces an assembly language output. The compiler then automatically starts the
assembler, which produces a .obj output file (hello.obj). Studio then involes
the TI Linker using the generic.cmd file, which is located in the root board
directory. This rebuilds the executable file using the newly revised hello.obj .
If no errors were encountered, this process creates the downloadable COFF file
hello.out, which can be run on the target. At this point, the program may be
run using the Terminal Emulator applet, which may be invoked using the Terminal
shortcut located within the program group created during the Zuma Libraries instal-
lation process. The program runs and outputs the message “Hello, Brave New
World” to the terminal emulator window.

If errors are encountered in the process, Studio detects them and places them in the
Output window. If the error occurred in the compiler or assembler (as in a C syntax
error), the cursor may be moved to the offending line by simply double-clicking on
the error line within the output window, and the error message will be displayed in
the Studio status bar. If the linker returns a build error, the output window shows
the error file. From this information, the linker failure can be determined and cor-
rected. For example, if a function name in a call is misspelled, the linker will fail to
resolve the reference during link time and will error out. This error will be dis-
played on the screen in the Output window.

Note: Be sure to start the terminal emulator BEFORE starting Studio, to avoid
reseting the DSP target in the midst of the debugging session. If Terminal is not yet
running and you wish to run the Hello object file, perform the following steps.

1. Execute Debug | Run Free to logically disconnect the DSP from the debugger
software

2. Terminate the Studio application

3. Invoke the Terminal Application
Development Package Software Manual

A Simple Studio Project
4. Restart the Studio application

This outlines the basics of how to recompile the existing sample programs within
the Studio environment.
Development Package Software Manual 81

Developing Target Code

82
 Development Package Software Manual

CHAPTER 5 Developing Host Code
This section describes the Innovative Integration Windows host software develop-
ment environment. The environment provides complete support for generating 32-
bit Windows-compatible software which is capable of controlling and communicat-
ing with I.I.’s DSP coprocessor and data acquisition cards. Virtual device drivers
(Windows 95 VxD or NT Kernel Mode Driver) and dynamic link libraries (DLL)
are included to provide an easy-to-use, portable low-level interface for the target
hardware, while sample applications show how to call the DLL functionality and
present basic interface examples and guidelines on processor card control require-
ments and data movement.

Host software development is directly supported under the Microsoft Visual C/C++
4.0 environment for generating 32-bit Wndows applications. All example applica-
tion programs included in the development package are supplied with Visual C
workspace files, making program modification and regeneration as simple as possi-
ble.

Please Note: only Windows application development is currently supported by the
Developer’s Package. Foreign operating systems, such as Unix and OS9 are not
currently supported.
Development Package Software Manual 83

Developing Host Code

84
Dynamic Link Library

All target interaction takes place through calls to the supplied dynamic link library
(DLL). This library supplies low-level functions for basic target board control,
including processor reset/run state, message passing via the board-specific mailbox
registers, application downloading, and bus master memory locking and access
control.

The function calls available under the DLL are documented in the appendicies.
Sample applications

(described below) provide working examples on how to interact with the card via
host software.

Sample Host Programs

The DLL is capable of interacting with up to four target DSP boards simultaneously
by default (contact II if more than four targets are required). The DLL maintains a
board-specific structure of information for each target, known as the cardinfo
structure. An prototype of the cardinfo structure is located in the
\INCLUDE\HOST\ subdirectory in the CARDINFO.H file. An example is shown
below.

//

// cardinfo.h -- definition of CARDINFO structure

//

#ifndef __CARDINFO_H__

#define __CARDINFO_H__

#include "ii_iostr.h" // Common IO Driver/DLL Structures

#include "mailbox.h" // Definition of MAILBOX structures

//

// BoardInfo structure

//

typedef struct _BoardInfo

{

 ULONG ProcessorCount;
Development Package Software Manual

Dynamic Link Library
 ULONG DLL_Version; // Version ID numbers

 ULONG DrvVersion;

 ULONG TalkerVersion;

 ULONG CellSize; // Targ memory cell size, in bytes

 ULONG CtlReg; // Shadow of control register

 ULONG FlashSectorSize; // Size of flash sectors, in bytes

 ULONG FlashDeviceId; // Flash device ID

 ULONG QuietMode; // Don't Display Messages if true

} BoardInfo;

//

// InterruptInfo structure

//

typedef struct _InterruptInfo

{

 ULONG IRQ; // IRQ of attached interrupt

 HANDLE Ring0Event; // Ring 0 event handle

 HANDLE Ring3Event; // Ring 3 event handle

 void (*Vector)(void *); // Virtual ISR function pointer

 void * Context; // Virtual ISR context pointer

 } InterruptInfo;

//

// SerialInfo structure

//

typedef struct _SerialInfo

{

 LONG In; // Buffer for last character received

 LONG ReadFlag; // True when character received

 LONG MbValue; // Multi-byte value

 LONG MbCtr; // Multi-byte read state

 ULONG RTS_state; // Current state of the RTS output

 LONG Bcr; // Bus control register value for Flash access

 LONG Reading; // TRUE if currently reading a character

 OVERLAPPED RxOverlap; // Info used in asynch input

 OVERLAPPED TxOverlap; // Info used in asynch output

 COMMTIMEOUTS Timeouts; // Info for set/query time-out parameters

 DCB Dcb; // Device control block

} SerialInfo;

//

// CARDINFO structure

//

typedef struct _cardinfo
Development Package Software Manual 85

Developing Host Code

86
{

 ULONG Target; // Number of current target

 HANDLE Device; // Handle to Driver for device

 BoardInfo Info; // Board Info

 MAILBOX * Mail; // Talker Mailbox Array

 IoPortBlock Port; // Primary Port Block Information

 IoPortBlock OpReg; // Secondary Port Block Information

 MemoryBlock DualPort; // Shared Memory Area Information

 MemoryBlock BusMaster; // BusMaster Memory Information

 nterruptInfo Interrupt; // Interrupt Information

 SerialInfo Serial; // Serial Port I/O (SBC's)

} CARDINFO;

#endif

The cardinfo structure is accessed within Host application programs in order
to gain access to board-specific parameters which are maintained by the DLL. For
example, in order to ascertain the size of the shared memory area on a specific tar-
get card a host program could use:

/* send bus mastering physical address to target processor */

dsp = (CARDINFO*)target_cardinfo(target);

size = dsp->Dualport.Size;

Sample Host Programs

Each Zuma Toolset is supplied with one or more example programs which illus-
trates control of the DSP board via the supplied DLL. For bus-based boards, the
example is SCOPE.C, which emulates a simple oscilliscope. For stand-alone
boards, the XRPT.C example is provided, which illustrates advanced serial commu-
nications. The SCOPE example

SCOPE.C is a small, working example written in Visual C v4.0 showing how to
use bus-based DSP boards to move data between the target and Host memory
spaces. The host application works in concert with a small DSP program running
on the target to mimic the operation of a simple oscilliscope.

The SCOPE application is included in the \EXAMPLES\HOST\SCOPE subdirec-
tory of %II_BOARD%. Its executable is located in the \EXAM-
PLES\HOST\SCOPE\RELEASE subdirectory. The DSP support code for this
application is located in the \EXAMPLES\HOST\SCOPE\DSP subdirectory.
Development Package Software Manual

Dynamic Link Library
SCOPE.C is a multi-threaded application example with three threads. The primary
thread performs Window managment, including the Windows message handler. A
second thread, EnqueueData() handles data movement from the target DSP to
the Host using shared memory (dual port memory on ISA bus cards and bus master
memory on PCI cards). The third thread, PlotData(), plots the enqueued data
received from the target within the window.

This program illustrates many of the elements of a typical Host application which
communicates with a target DSP application. In this example, this Host program
communicates closely with the SCOPE.C DSP application located in the \EXAM-
PLES\HOST\SCOPE\DSP directory. SCOPETRG.C is the code which runs on
the target DSP and which is responsible for feeding information to the Host via
shared memory.

When the Host program starts, it invokes the COFF downloader to download the
object image of the target DSP application (SCOPETRG.OUT) within the down-
load() procedure. This procedure makes calls on the DLL in order to effect the
download. Following the download, the application is started running using the
start_app() function. The DSP application immediately begins generating
mock analog data in order to emulate acquiring data from the analog subsection on
the target, enqueuing the acquired data. As soon as a packet-full of data is avail-
able, the data is dequeued by the target, moved into shared memory and the Host
program is signalled, using the host_interrupt() target procedure.

The Host device driver handles the target interrupt signal and issues an special
EVENT message to the ring three DLL which performs a callback on the user-
installed Host EnqueueData() function. When this occurs, the offset into dual
port memory containing the new packet of analog samples is read from the shared
memory. This address is used to enqueue data from shared memory area into a
Host-maintained data queue of real-time analog samples.

The Host PlotData() thread draws an oscilliscope-like grid on the display win-
dow, then polls continuously for the availability of analog samples in the Host
queue. When a screenfull of data is available in the queue, it is dequeued and plot-
ted.

The primary thread is responsible for handling window messages only. The most
typical window messages are invoked when the users drags or resizes the oscillis-
cope window. When this occurs, the WM_SIZE message handler sets the global
variable refresh TRUE, which indicates to the PlotData() thread that a com-
plete window update is needed. The PlotData() function temporarily drops out
Development Package Software Manual 87

Developing Host Code

88
of the data plotting loop in order to redraw the oscilliscope display. Then, it resume
the plotting function again, until the refresh variable is modified again.

The XRPT example

XRPT.C is a small, working example written in Visual C v4.0 showing how to use
serial-based DSP boards to move data between the target and Host memory spaces.
The host application works in concert with a small DSP program running on the tar-
get to tally the number of target-to-host interrupts signalled by the DSP during
application execution. Like the SCOPE example for bus-based DSPs, XRPT illus-
trates installation of a Host interrupt handler using DLL calls. This interrupt han-
dler is invoked by the target DSP via the host_interrupt() function call, which in the
case of single-board targets initiates a delta-CTS interrupt to the Windows device
driver, which signals and event to the II DLL which calls back the user-installed
interrupt function.
Development Package Software Manual

CHAPTER 6 Creating Target Software
Software is created for the target DSP by using one or more of the tools included in
the Developer’s Package, alone or in concert with each other, to generate a down-
loadable executable COFF format file which can be run on the target DSP board
with the aid of the utilities included in the package.

This section of the Developer’s Package Software Manual details the use of the
individual tools in the package to create executables for the target, and gives step-
by-step instructions on how to use the C compiler and Code Composer to write,
compile, test, and debug custom C applications on the target. Sample C applica-
tions are also discussed

C Code Development

C Compiler

The Texas Instruments C compiler is an ANSI C compatible compiler which pro-
duces optimized assembly code for the TMS320C4x family of processors. A com-
plete set of manuals is included with the M62 Developers Package.
Development Package Software Manual 89

Creating Target Software

90
In addition to the excellent manuals from TI, refer to the Kernighan and Ritchie C
Handbook (available at cost from I.I.) for generic C questions and syntax. The TI
manuals primarily describe the use of the compiler with the TMS320C4x family
and are not intended as C primers for the beginner.

C Library Reference

Complete source code to the entire suite of ANSI C libraries is provided with the C
system to aid in code development. Refer to pages 5-10 through 5-18 of the
TMS320 Floating Point DSP Optimizing C Compiler Manual for a complete list of
TI C functions.

The I.I. M62 Developer’s System also includes extensive high-level libraries useful
in interacting with the various peripherals on the M62 board. The following sec-
tions describe by peripheral type the functions provided in the peripheral library.
For a complete alphabetical listing of all peripheral functions, see Appendix I.

M62 Zuma Toolset Libraries

The Zuma toolset provides both target peripheral libraries and Host DLLs and
numerous example programs to illustrate usage.

The peripheral libraries for the M62 provide support for the on-board peripherals
and terminal I/O functions. The libraries are provided in three linkable .LIB files:
PERIPH.LIB, STDIO.LIB and DSP.LIB. STDIO.LIB holds all the con-
sole terminal emulation and communications routines listed in the following sec-
tion, while PERIPH.LIB contains all other peripheral driver routines. DSP.LIB
contains commonly requested C-callable digital signal processing functions, plus
common math and queue management extensions. Source code for the routines is
also provided, arranged by function in the \PERIPH, \STDIO and \DSP subdi-
rectories of the root II_BOARD directory, as follows:
Development Package Software Manual

C Code Development
TABLE 12. Zuma Toolset Source Directories

The toolset also contains various support files arranged as described below.

TABLE 13. Zuma Toolset support subdirectories

STDIO Console Terminal Driver. The Developer’s Package contains a full-fea-
tured terminal emulator application (terminal.exe), suitable for both user interface
purposes as well as debugging use. The peripheral library provides a complete set
of standard I/O routines which can communicate directly with this terminal emula-
tor. The source for the standard I/O routines is given in the \STDIO subdirectory
under the installation directory. In general, the standard I/O library functionality is
identical to that of the K&R standard I/O library. However, some M62-specific
functions are provided to allow higher level functionality such as cursor position-
ing, text attribute control and graphical data plotting. The following target pro-
gramming section gives details on how to use the standard I/O peripheral library to
interact with the terminal emulator.

Directory Library Source
\DSP Standard Digital Signal Processing Routines
\PERIPH\ANALOG Drivers for the M62 A4D4 instrumentation-grade analog I/O module

and the complementary TERM mux module.
Drivers for the SD high-performance audio module

\PERIPHERAL\BUS Drivers for V360 bus-mastering PCI interface
\PERIPH\DIGITAL Digital I/O, PIT Timer control, module FLASH ROMs, etc.

Drivers for DIO module
Drivers for MOT motion control module

\PERIPHERAL\DIO DIO module DUART and digital I/O drivers
\PERIPH\MISC Miscellaneous processor control and data conversion functions
\PERIPH\RTS Modified boot-up routines for the M62 baseboard.
\STDIO Console and terminal emulation functions
\TALKER Startup umbilical ‘C6201 software

Directory Library Source
\EXAMPLES\HOST Example programs illustrating use of the DLL to control the DSP

board from within MS Visual C programs.
\EXAMPLES\TARGET Example programs illustrating use of the target peripheral libraries to

perform common DSP tasks.
\INCLUDE\HOST Header files used by Host Visual C programs
\INCLUDE\TARGET Header files used by target Texas Instruments C programs
\LIB\HOST Linkable library files for Host Visual C and C++ programs
\LIB\TARGET Linkable library files for target TI C and assembler programs
\SRC Useful public domain source files for the C6201 processor.
Development Package Software Manual 91

Creating Target Software

92
Digital Peripheral Drivers. The digital peripheral drivers control the ‘C6201
internal timers and the digital I/O lines, allowing high-level access to timebase con-
trol functions and digital I/O activity without doing direct hardware programming.
The following target programming section gives details on how to use the digital
peripheral library to program the digital peripherals. Source code for the functions
is given in the \PERIPH\DIGITAL directory.

BUS Peripheral Drivers. The BUS peripheral drivers provide control functions
for the onboard V360 PCI bus interface. The available routines support very-high
speed bus-mastering transfers between the 512 Kbyte, external async SRAM of the
M62 and host PC memory. This driver also includes hardware mailbox support
routines which are used extensively by the standard I/O library in order to support
terminal emulation. Additionally, these mailbox routines provide a means of per-
forming interrupt-driven communications with the Host PC. The target program-
ming section gives details on how to use the bus peripheral library. Source code for
the functions is given in the \PERIPH\BUS directory.

Miscellaneous Peripheral Drivers. The MISC directory contains code to support
high-level access to the internal registers, byte packing and unpacking, interrupt
vector support, and other functions. Source code for the functions is given in the
\PERIPH\MISC directory.

RTS Peripheral Drivers. The RTS peripheral drivers provide board-specific ver-
sions of the functions called by the TI C Compiler during coldstart initialization of
the C runtime engine. These files have been modified as necessary in order to pro-
vide a complete initialization of the M62 onboard hardware immediately prior to
calling main() within application code. Additionally, the RTS functions incude a
modified version of the millisecond timer function required to support the TI C
timekeeping functions (listed in time.h). Source code for the functions is given
in the \PERIPH\BUS directory.

Digital Peripheral Drivers. The digital drivers support access to all baseboard and
add-on digital I/O functions.

The DIO peripheral drivers provide control functions for the optional DIO plug-in
module. The functions provide high-level C access to the DIO module’s 32 addi-
tional digital I/O lines plus either interrupt-driven or polled use of the DIO’s
onboard DUART (Dual-channel Universal Asynchronous Receiver Transmitter).
The target programming section gives details on how to use the digital peripheral
library to program the digital peripherals. Source code for the functions is given in
the \PERIPH\DIGITAL\DIO directory.
Development Package Software Manual

C Code Development
The MOT peripheral drivers provide control functions for the optional MOT plug-
in module. The functions provide high-level C access to the MOT module’s four,
precision motion-control axes. Each of the axes features independent encoder
inputs and either digital or 16-bit analog output. Digital output may be either pulse
and direction positive and negative pulse to support stepper motor amplifier inputs.
The target programming section gives details on how to use the MOT peripheral
library to program these peripherals. Source code for the functions is given in the
\PERIPH\DIGITAL\MOT directory.

Analog Peripheral Drivers. The Analog peripheral drivers provide control func-
tions for the optional analog plug-in modules: The A4D4, AIX and SD modules.
The functions provide high-level C access to the A4D4’s analog input and output
channels and their associated gain amplifiers. Additionally, the driver supports
control of the optional TERM break-out panel, a companion to the A4D4 module,
in order to support muxing of each of the A4D4 modules 8:1 to allow input from up
to 32 simultaneous channels per A4D4 module. Source code for the functions is
given in the \PERIPH\ANALOG\A4D4 directory.

The AIX peripheral drivers provide control functions for the optional AIX plug-in
module. The functions provide high-level C access to the AIX module’s four, 2.5
MHz, 16-bit analog input channels. Source code for the functions is given in the
\PERIPH\ANALOG\AIX directory.

The SD peripheral drivers provide control functions for the optional SD plug-in
module. The functions provide high-level C access to the A4D4 module’s four,
audio-grade, 24-bit analog input and 20-bit output channels. Source code for the
functions is given in the \PERIPH\ANALOG\SD directory.

The target programming section gives details on how to use the analog peripheral
library to program these analog peripherals.

Digital Signal Processing Library. The DSP directory contains code to support
high-level access to the common signal processing functions such as FFT’s, filters
and compression. Additional routines are provided for common functions such as
matrix manipulation, curve fitting and general purpose queue management. Source
code for the functions is given in the \DSP directory.
Development Package Software Manual 93

Creating Target Software

94
Texas Instruments C Libraries. Several libraries are included with the system
that provide support for floating point and extended math functions, DSP oriented
procedures and initialization examples. Chapter 5 in the TMS320 Floating Point
DSP Optimizing C Compiler User’s Guide describes the libraries.

The following libraries are available:

TABLE 14. Texas Instruments Standard Library Functions

M62 Hardware Interaction

All peripherals are meory mapped into the ‘C6201 address space, using the loca-
tions given in the following table. The table also lists the wait states applied to
accesses to each peripheral.

The development system provides routines to access all integrated M62 peripher-
als. This section describes how to program the peripherals using the supplied
library functions under C or via direct memory accesses to the supplied peripheral
register map. In general, direct memory access delivers higher performance than
using the C function library since it avoids the overhead of the function calls neces-
sary to access the library. However, the libraries have been crafted to utilize inline
code where possible to mitigate this effect. In the peripheral descriptions that fol-
low, each device’s access methods are called out for both high level and direct
memory access. In the case of C functions, the function names and argument vari-
ables are called out. In the case of direct memory access operations, the relevant
addresses are listed along with the functions they perform and accompanying
Periph structure elements which may be used from C to simplify access. These
elements are defined in the header file periph.h.

Library Operation
ASSERT.H Defines the assert macro for runtime error message reporting.
CTYPE.H Declares functions that test and convert characters.
LIMITS.H Defines range limits for characters and variable types.
FLOAT.H Defines floating point range limits
MATH.H Defines trigonometric, exponential and hyperbolic math functions
ERRNO.H Defines errno variable for catching range errors in function calls
STDARG.H Defines macros to aid in variable argument functions
STDDEF.H Defines two new types and macros used within runtime functions
STDLIB.H Declares many common library functions such as string conversion, sorting and

searching functions, program exit functions and some integer-arithmetic that is
not a standard part of C

STRING.H Declares functions for string manipulations
TIME.H Declares macros and types useful for time manipulations
Development Package Software Manual

C Code Development
TABLE 15. M62 External Peripheral Memory Map

This document does not describe peripheral hardware specifications and other hard-
ware issues. Refer to the M62 Hardware Manual for hardware information.

Function Address C Language Mneumonic Mem
Space

FIFO Port 0x0400000 Periph->Fifo CE0
V360 Registers 0x1400000 Periph->PciRegs CE1
FIFO Port Reset 0x1410000 Periph->FifoReset
AD9850 Reset 0x1470000 Periph->DDS.Reset
AD9850 Frequency
Update

0x1480000 Periph->DDS.Update

AD9850 Write Clock 0x1490000 Periph->DDS.Clock
Digital I/O Data Regis-
ter

0x14A0000 Periph->Dio.Data

Digital I/O Direction
Control

0x14B0000 Periph->Dio.Direction

Digital I/O Input Latch
Clock Control Register

0x14C0000 Periph->Dio.LatchControl

External Mux Control 0 0x14D0000 Periph->Mux[0]
External Mux Control 1 0x14E0000 Periph->Mux[1]
16 bit External Timer 0x14F0000 Periph->Timer
External Interrupt Input
4 Select

0x1500000 Periph->EI[4]

External Interrupt Input
5 Select

0x1510000 Periph->EI[5]

External Interrupt Input
6 Select

0x1520000 Periph->EI[6]

External Interrupt Input
7 Select

0x1530000 Periph->EI[7]

I/O Module Strobe 0 0x1540000 Periph->Module[0]
I/O Module Strobe 1 0x1550000 Periph->Module[1]
I/O Module Strobe 2 0x1560000 Periph->Module[2]
I/O Module Strobe 3 0x1570000 Periph->Module[3]
I/O Module Strobe 4 0x1580000 Periph->Module[4]
I/O Module Strobe 5 0x1590000 Periph->Module[5]
I/O Module Strobe 6 0x15A0000 Periph->Module[6]
I/O Module Strobe 7 0x15B0000 Periph->Module[7]
I/O Module Strobe 8
(cM62 only)

0x15C0000 Periph->Module[8]

I/O Module Strobe 9
(cM62 only)

0x15D0000 Periph->Module[9]

I/O Module Strobe 10
(cM62 only)

0x15E0000 Periph->Module[10]

I/O Module Strobe 11
(cM62 only)

0x15F0000 Periph->Module[11]

Async SRAM
(128Kx32)

0x1600000 Periph->ASRam[0..0x80000]

SDRAM (16Mbyte)
(optional)

0x2000000 Periph->SDRam[0..0x1000000] CE2

SBSRAM (1Mbyte)
(optional)

0x3000000 Periph->SBRam[0..0x100000] CE3
Development Package Software Manual 95

Creating Target Software

96
Digital Input/Output

The digital input/output (I/O) buffers provide a means for generating 32 bits of
direct digital input or output to and from external hardware. This I/O can be
clocked from either the ‘C6201 processor or from external TTL sources, allowing
external devices to automatically latch data into the I/O buffers for the ‘C6201 to
read.

Input/output direction for either half of the 32-bit port may be programmed on the
fly using on-board logic. The port may be configured in software for input or out-
put in groups of eight bits.

Memory Mapped Digital I/O Access. The following table shows the memory
locations used to interact with the digital I/O buffers. Three C language routines
are supplied to interact with the digital I/O port.

TABLE 16. Digital I/O Access Memory Location

The Periph->Dio.Data location is used to access the data lines of the digital I/
O port. Results of read and write accesses depend on the I/O direction of the port
(see below for information on setting the port direction). If the port is configured
for input, a read access latches new read data from the external pins and the new
data is read into the ‘C6201. If the port is configured for output, the most recently
latched output data is read into the ‘C6201 (output data does not change). Write
accesses to an input port cause no change to the port status, while write accesses to
an output port cause the new data to be latched and output to the external I/O pins.

The Periph->Dio.Direction location controls the direction of each byte of
the digital I/O port. The four least significant bits of this register are used to config-
ure each of the bytes of the digital I/O port for either input or output, as follows:

Function C Language Mnemonic
Digital I/O Data Register Periph->Dio.Data

Digital I/O Direction Control (4 bytes) Periph->Dio.Direction

Digital I/O Latch Control Periph->Dio.LatchControl
Development Package Software Manual

C Code Development
Table 17: Digital I/O Direction Configuration

The Periph->Dio.LatchControl location controls the method of latching
data into each byte of the digital I/O port. The four least significant bits of this reg-
ister are used to configure the latch method as either internal (triggered by CPU
accesses) or external (triggered by an external TTL pulse), as follows:

TABLE 17. Digital I/O Latch Configuration

C Language Digital I/O Functions. Data may be read or written to the digital I/O
port using the following routines in the DIGITAL support library.

Dio.Direction-
Register Bit #

Value Direction

0 0 DX[0..7] output (default)
1 DX[0..7] input

1 0 DX[8..15] output (default)
1 DX[8..15] input

2 0 DX[16..23] output (default)
1 DX[16..23] input

3 0 DX[24..31] output (default)
1 DX[24..31] input

Dio.LatchControl

Register Bit #

Value Bits Affected Clock Source

0 0 0..7 Internal (CPU-based)
1 External

1 0 8..15 Internal (CPU-based)
1 External

2 0 16..23 Internal (CPU-based)
1 External

3 0 24..31 Internal (CPU-based)
1 External
Development Package Software Manual 97

Creating Target Software

98

TABLE 18. Digital I/O library functions

Timers

The timers provide the capability to generate hardware timebases which can be
used to trigger processor interrupts, analog signal conversions, or as direct outputs
to external hardware. There are a total of six timebase sources built in to the M62:
two 32-bit timers internal to the ‘C6201 processor, and three 16-bit channels imple-
mented with custom logic within the FPGA plus one AD9850 direct digital synthe-
sizer. The supplied library functions initialize the timers to a free-running, pulse
generation mode suitable for generating convert pulses to the analog hardware.

The timers are initialized by code in the timebase() routine each time it is
called. Normally, no other function calls are necessary to use the timers. However,
when supplying an external TTL signal to the ‘C6201 TCLK0/1 inputs in order to
provide an external timebase to analog circuitry, it will be necessary to create and
use a custom version of timebase() which tristates the TCLK output driver to
avoid contention with external sources. Please note that certain hardware setups
might be required depending on the application. See the M62 Hardware Manual
for more details on how to set up the M62 board.

C Language Timer Functions. The following functions give high-level access to
the timer hardware. See the appendicies for complete information on the functions.

TABLE 19. C Language Timer Functions

timebase() can be used to set a particular timebase to a particular frequency.
For example, the following call sets PIT timer channel 1 to generate a 1000 Hz out-

Function Name Description
DIO_dir() Sets the direction of all four bytes of the onboard 32-bit

digital I/O port.
DIO_read() Returns current state of all 32-bits of digital I/O port.
DIO_write() Sets current state of all 32-bits of digital output port cur-

rently configured for output.
DIO_latchcontrol() Sets the latch method of all four bytes of the onboard 32-

bit digital I/O port.

Function Name Operation
timebase() Configures a specified timer channe (0..5) l for periodic counting at a

specified frequency using a specified source clock rate..
Development Package Software Manual

C Code Development
put pulse stream, assuming the the hardware default 1 MHz input clock to the
FPGA logic:

timer(1, 1000.0, 1.0);

Memory Mapped Timer Access It is possible to directly access to the inter-
nal timer hardware controls via memory mapped registers at specific addresses. It
may be necessary to use these addresses to set the timers to a custom mode. In gen-
eral, unless custom functionality is required of the timers, it is recommended that
the user exclusively access the timers via the timer() routine rather than pro-
gramming the control and period registers manually.

For information about the ‘C6201 internal timers, please see the TMS320C6x
User’s Guide. For information about the custom PIT counter/timer device, contact
Innovative Integration. For an example of direct timer channel control, refer to the
source code for the timebase() function, located in the PERIPH\DIGITAL
subdirectory.

STDIO Communication. C stdio terminal emulation is provided in the Peripheral
Library. The stdio library communicates with the host TERMINAL.EXE program
via the V360 PCI interface mailbox registers to provide stdio support to DSP appli-
cations running on the M62. The stdio interface may be used for real-time, non-
intrusive software debugging or to create a basic user interface for OEM applica-
tions.

The following list shows the available Peripheral Library calls and their operation.
See Appendix I for complete information on the functions.

Function Name Operation
putchar() Emits an 8-bit character to the terminal emulator
getchar() Gets an 8-bit character from the terminal emulator’s keyboard

buffer
gets() Inputs a string into a target buffer
puts() Displays a string from a target buffer
sprintf() Formats a string into a memory buffer pointed to by buffer
printf() Prints a formatted string to the terminal
scanf() Inputs a formatted string from the terminal into a buffer
sscanf() Converts a formatted string in memory into a buffer..
stdio_reset() Resets the terminal emulator display
fopen() Opens a file on the Host PC, returning the file handle
fclose() Closes a previously opened Host PC file.
fread() Reads file contents into a target buffer
fwrite() Writes a target buffer into a Host PC file
fseek() Repositions the Host PC file pointer
ferase() Erases the specified Host PC file
Development Package Software Manual 99

Creating Target Software

100
TABLE 20. STDIO Driver Functions

Using Interrupts. The M62 supports four external and numerous internal hard-
ware interrupts. These include EI0, EI1, EI2, EI3 plus TINT0, TINT1 (internal
timer/counters), internal comm port transmit and receive and DMA.

Interrupts on the TMS320C6201 may be handled by writing either high-level C or
assembly language procedures within your application files which employ the fol-
lowing interrupt-specific function names:

void c_intNN() for C handlers or

_c_intNN for assembly language

where NN is numbered 0 through 99 for each of the interrupts. For each interrupt, a
procedure must be coded which will be executed upon acknowledgment of inter-
rupt NN by the 'C6201. This is described on page 4-27 of the C Compiler Users
Manual.

Consider the following code example:

/*

* EXAMPLE.C

*/

#define TINT0 14

kbd_hit() Returns a nonzero value if characters are currently available in
the monitor keyboard buffer

kbd_key() Returns 16-bit IBM scancode for pending keystroke from the
terminal emulator’s keyboard buffer.

gotoxy() Moves the terminal cursor
wherexy() Returns the terminal cursor position
clreol() Clears to end of current line
clrscr() Clears the terminal screen
type() Types formatted, null terminated string to console
bold() Enables bold text attribute in terminal emulator
normal() Enables standard text attribute within terminal emulator
get_attribute() Returns the current character display attributes
set_attribute() Sets the current character display attributes
cursor() Enables/disables the cursor
get_busmaster_addr() Obtains the base of the host busmaster memory from the termi-

nal emulator.
plot() Plots a Host PC file as a graph.
view() Plots a target buffer as a graph.
Development Package Software Manual

C Code Development
main()

{

 enable_interrupts(); /* Enable unmasked xrpts */

 timebase(1, 1000.0, 1.0); /* Internal timer 1 at 1kHz */

/* install interrupt handler on TINT1 */

 install_int_vector(c_int02, TINT0);

 enable_interrupt(TINT0);

.

 /* Bulk of application */

.

disable_interrupt(TINT0); /* Disable TINT0 xrpt */

}

/*

* ISR for timer 0 - Tally a variable

*/

int milliseconds

void c_int14()

{

milliseconds++; /* Internal timer 0 is used to */

} /* synthesize a timebase */

In this code, the internal timer 0 is configured to output a pulse every millisecond
which drives TINT0 on the ‘C6201. The vector is installed into the jump table with
a call to install_int_vector() and the bit associated with TINT0 in the
Development Package Software Manual 101

Creating Target Software

102
interrupt enable register, is enabled. Finally, main() calls
enable_interrupts() which sets the global interrupt enable bit so that all
unmasked interrupts can be processed.

Each time the counter expires, the routine c_int14() executes. In this example,
the variable milliseconds is incremented during each interrupt service cycle.

Each DSP application should include a copy of the default interrupt vector table
which is defined in vectors.asm. This assembly file is located in the
PERIPH\RTS directory and when compiled into a .obj file and linked into the
application, will cause all entries in the vector table to be initialized with a default
handler (the one exception being the break interrupt vector, which is filled with the
pointer to the talker program). If an application needs to make use of interrupts,
those vectors which are affected need to be changed with
install_int_vector() at run time.

See the target example programs provided on your distribution disks for further
examples of the use of interrupts.

Example Target Programs for the M62

The following section details the example target software included with the Devel-
oper’s Package. These programs are provided as models for custom user software,
and it is highly recommended that the user examine these examples before begin-
ning a first development effort for the target. Full source code is provided for user
inspection and reuse in modified or custom applications.

These examples will run on a standard M62 card with no additional hardware
required.

HELLO

HELLO is a very simple introduction to basic program components and use of the C
stdio library for the target card. When run with the host terminal emulator active,
the program simply initializes the target hardware and stdio interface and prints the
message “Hello, world” via the stdio library to the terminal emulator screen. The
program then drops into an infinite dwell loop.
Development Package Software Manual

Example Target Programs for the M62
HELLO may be rebuilt from withi the Codewright environment by loading the
HELLO.PJT project from the \target\examples directory, modifying the source file
HELLO.C, and rebuilding the project (see the Codewright documentation for more
information on the application’s project management and make facilities).

For correct program functionality, it is necessary to run the HELLO application via
the host terminal emulator program. If the terminal emulator is not active and com-
municating with the target M62 card on which HELLO is running, the application
will appear to hang at the first instance of a stdio function call (usually a get-
int() or putint() call). This is due to the fact that all stdio calls use the M62
bus mailbox interface and are handshaken with the host terminal emulator applica-
tion, and any such calls will hang if the terminal emulator is not active to complete
the communication link.

TEST

TEST is board level hardware test program, capable of exercising the major periph-
erals on the M62 to double-check proper hardware functionality. As such, it con-
tains routines for exercising each of the peripherals on the M62, including:

1. Digital I/O

2. Internal timers

3. External timers

4. Communications Ports

Since the TEST program aims to be all-encompassing in that it tries to test as much
of the board-level functionality as possible, it serves as a poor example for compli-
cated operations such as A/D multi-channel sampling and display. However, since
the code included for TEST is broken down into functional pieces which are called
separately for each subsystem to be tested, it is possible to factor out individual
tests for use in other programs.
Development Package Software Manual 103

Creating Target Software

104
 Development Package Software Manual

CHAPTER 7 Target DSP Peripheral
Libraries
Target Functions by Category

Category Name Description
Board Initialization &
System Functions

baud Set baud rate on current serial port

cpu Set CPU number and mailbox
cpu_num Get CPU number
cpu_number Get CPU number (inline)
detect_cpu_speed Derive DSP clock speed
dma_done Wait for DMA completion
dpram_addr Return start address of Dualport RAM

on PC31
dpram_type Detects 16 or 32 bit Dualport RAM on

PC31
init_serial Initialize the serial I/O system
InitIP Initialize Industry Pack access struc-

ture
mem_size Detect size of memory space
test_mem PC31 memory check

Busmaster Transfer
Functions

bm_init Busmaster transfer initialization

bm_transfer General busmaster transfer
fifo_init Busmaster initiaization
transfer_complete Wait for Busmaster transfer to com-

plete
USB Bulk Transport
Interface Functions

InitBulkTranport Initialize the Bulk Tranport Interface
Development Package Software Manual 105

Target DSP Peripheral Libraries

106
StopBulkTransport Shut down the Bulk Transport Inter-
face

IsBulkTransportReady Returns true if system can send data
OpenBulkTransport Opens a channel of the Bulk Transport

System
CloseBulkTransport Shuts down an open channel of the

Bulk Transport System
ReadBulk Read a block from a Bulk Transport

channel
WriteBulk Writes a block to a Bulk Transport

channel
BulkDataAvailable Returns the amount of data available

for reading on a channel
BulkSpaceAvailable Returns the room for new data avail-

able on a channel
FlushBulk Forces the transmission of all data in a

channel
Digital I/O Functions C31_dig_dir Program the direction of PC31/SBC31

PIA Digital I/O bytes
C31_read_dig Read PC31/SBC31 PIA Digital I/O

lines
C31_write_dig Write to PC31/SBC31 PIA Digital I/O

lines
C31_write_dig_bit Update a single bit on PC31/SBC31

PIA Digital I/O
dig_dir Program the direction of Digital I/O

bytes
read_abits Read state of ABITS output lines
read_abits_bit Read state of a single ABITS output

bit
read_dig Read Digital I/O lines
read_dig_bit Read state of a single digital bit
write_abits Write to ABITS digital output
write_abits_bit Update a single ABITS digital output

bit
write_dig Write to digital output
write_dig_bit Update a single digital output bit

Analog I/O Control
Functions

enable_analog Initialize analog subsystem

trigger_adc Set triggering mode for an ADC
trigger_adc_pair Set triggering mode for an ADC pair
trigger_dac Set triggering mode for an DAC
trigger_dac_pair Set triggering mode for an DAC pair
write_analog_interrupt_mask Set which analog conversions fire

interrupts
Analog Input Functions correct_adc Adjust ADC reading to proper range

correct_adc_pair Adjust a pair of ADC readings to
proper range

convert_adc Manually trigger an ADC conversion
convert_adc_pair Manually trigger an ADC conversion

on an ADC pair
read_adc Read data from ADC
read_adc_pair Read data from a pair of ADCs
read_adc_automux Read data from ADC, and switch mul-

tiplexer
Development Package Software Manual

read_adc_pair_automux Read data from a pair of ADCs, and
switch mux

Analog Output Func-
tions

correct_dac Adjust DAC reading to proper range

correct_dac_pair Adjust a pair of DAC readings to
proper range

convert_dac Manually trigger a DAC conversion
convert_dac_pair Manually trigger a DAC conversion

on a DAC pair
convert_dacs Manually trigger DAC conversions

using a bit mask
read_dac Read last value loaded into a DAC
read_dac_pair Read last value loaded into a DAC

pair
update_dac Write DAC value and automatically

trigger conversion
update_dac_pair Write DAC pair and automatically

trigger conversion
write_dac Write value to DAC
write_dac_pair Write value pair to a DAC pair

Programmable Gain
Functions

gain_to_mode Convert Gain into equivalent Gain
Mode number

mode_to_gain Convert gain mode to actual gain
value

read_gain Read last Gain setting
write_gain Update gain setting for a channel
write_gains Update gain setting for all channels

Mux Control Functions auto_mux Configure automatic multiplexing fea-
ture

read_mux Read last setting of a particular mux
write_mux Update multiplexer setting for a chan-

nel
write_muxes Update multiplexer setting for all

channels
Mailbox and Sema-
phore Functions

check_inbox Check incoming mailbox for new data

check_outbox Check outgoing mailbox for new data
clear_mailboxes Clear mailboxes
get_semaphore Get hardware semaphore
read_mailbox Read from incoming mailbox
read_mb_terminate Read from incoming mailbox if data

available
release_semaphore Release hardware semaphore
write_mailbox Write to outgoing mailbox
write_mb_terminate Write to outgoing mailbox if box is

ready
Interrupt Support Func-
tions

deinstall_int_vector Remove vector from vector table

disable_interrupt Disable specific interrupt
enable_interrupt Enable specific interrupt
host_interrupt Target to host interrupt
install_int_vector Install vector into vector table
mailbox_interrupt Post a mailbox interrupt to the host
mailbox_interrupt_ack Acknowledge a mailbox interrupt
mailbox_interrupt_deinstall Unload the handler for mailbox inter-

rupts
mailbox_interrupt_disable Disable mailbox interrupts
Development Package Software Manual 107

Target DSP Peripheral Libraries

108
mailbox_interrupt_enable Enable mailbox interrupts
mailbox_interrupt_install Load a handler for mailbox interrupts
suspend Idle until interrupts arrive
interrupt_cpu Interrupt specified multiprocessor tar-

get CPU
cpu_int_src Return source code # for specified

multiprocessor CPU
cpu_xrpt_bit Return register index to specified mul-

tiprocessor CPU
Timer Functions disable_clock Disable system millisecond timebase

enable_clock Initialize system millisecond timebase
ms Dwell milliseconds
read_timer Read value from a hardware timer
timebase Set hardware timer frequency
timer Set hardware timer frequency
uclock Get system millisecond timer value
us Dwell microseconds

Memory Movement
Functions

copy_mem Fast on-chip memory copy

fill_mem Fast on-chip memory fill
mem_to_port Fast on-chip transfer of data to a port
port_to_mem Fast on-chip transfer of data to a port
dma_copy_mem Fast DMA memory copy
dma_fill_mem Fast DMA memory fill
dma_mem_to_port Fast DMA transfer of data to a port
dma_port_to_mem Fast DMA transfer of data to a port

Conversion Functions from_ieee Convert from IEEE-754 floating point
format

packb Pack byte value into int
packh Pack half word value into int
to_ieee Convert to IEEE-754 floating point

format
unpackb Unpack byte values from int
unpackh Unpack half word values from int

Flash Memory Pro-
gramming

fast Restore PBCR to original value after
Flash access

flash_erase Erase entire Flash memory
flash_init Initialize Flash for programming
flash_rd Read Flash byte
flash_read Read 32-bit word from Flash
flash_sector_erase Erase a Flash sector
flash_wr Write a byte to Flash memory
flash_write Write 32-bit word to Flash
slow Reduce speed of I/O accesses to

access Flash memory
CPU Register I/O clear_interrupt_flag Disable interrupt enable bit

get_DIE Retrieve 320C4x DIE register
get_IE Retrieve 320C3x IE register
get_IIE Retrieve 320C4x IIE register
get_IF Retrieve 320C3x IF register
get_IIF Retrieve 320C4x IIF register
get_IOF Retrieve 320C3x IOF register
get_ST Retrieve 320C3x/4x Status register
set_DIE Set 320C4x DIE register
set_IE Set 320C3x IE register
set_IF Set 320C3x IF register
set_IIE Set 320C4x IIE register
set_IIF Set 320C4x IIF register
set_IOF Set 320C3x IOF register
Development Package Software Manual

FIFO Library Functions

set_interrupt_flag Set ‘C3x Interrupt Flag Bit
set_PC Set processor program counter
set_ST Set processor status register

FIFO Link Support set_fifo_link_AF_levels Set almost-full threshold levels
fifo_link_emit Send a character to link using handshake
fifo_link_key Get a character from link using hand-

shake
fifo_link_spit Send a character to link without using

handshake
fifo_link_eat Get a character from link without using

handshake
bleed_fifo_link Drain FIFO into memory buffer
fill_fifo_link Fill FIFO from memory buffer
reset_fifo_link Initialize a link to empty state
get_fifo_link_status Obtain fullness state information
login() Query subordinate processors for login

sequence
sub_login Send login sequence to master processor
fifo_link Return register index to FIFO link for

specified CPU
FIFO Port Support set_fifo_port_AF_levels Set almost-full threshold levels

fifo_port_emit Send a character to link using handshake
fifo_port_key Get a character from link using hand-

shake
fifo_port_spit Send a character to link without using

handshake
fifo_port_eat Get a character from link without using

handshake
bleed_fifo_port Drain FIFO into memory buffer
fill_fifo_port Fill FIFO from memory buffer
reset_fifo_port Initialize a link to empty state
get_fifo_port_status Obtain fullness state information
Development Package Software Manual 109

Target DSP Peripheral Libraries

110
Standard I/O Library Functions

Category Name Description
Console Terminal Control
Functions

bold Set console text bold attribute

clreol Clear console to end of line
clrscr Clear console screen
cursor Enable/disable console cursor
get_attibute Get current console text attribute type
gotoxy Set cursor position
normal Set console text normal attribute
set_attibute Set current console text attribute type
wherexy Get cursor position

Low Level I/O emit Send a character to the terminal emulator
getchar ANSI get character from console
kbd_hit Install vector into vector table
kbd_key Get a key from the terminal emulator
key Get a character from the standard mail-

box
putchar ANSI put character to console

C Standard I/O Library
Emulation Functions

fclose Close a host disk file

ferase Delete a host disk file by name
fflush Commits an open file I/O stream to disk
fopen Open a host disk file for read
fread Read from host disk file into target mem-

ory
fseek Moves the file pointer to a specified loca-

tion
fwrite Write to host disk file from target mem-

ory
gets ANSI gets from console
printf ANSI printf to console
puts ANSI puts to console
scanf ANSI scanf from console
sprintf ANSI sprintf
sscanf ANSI sscanf
type Send a character string to the terminal

emulator
Terminal Applet Exten-
sions

get_busmaster_addr Retrieve host busmaster address from
Terminal

plot Transfer data buffer to host for plotting
stdio_reset Reset the Terminal program
stdio_terminate Send the termination code to Terminal
Development Package Software Manual

DSP Library Functions

Category Name Description
Signal Processing
Functions

bartlett Bartlett window generation

bitrev Bit reversal function
blackman Blackman window generation
buffer_statistics Calculate statistics on a data buffer
ffft_r1 Forward Fast Fourier Transform - Real
ffft_r2 Forward Fast Fourier Transform - Com-

plex
fir Finite Impulse Response Filter
hamming Hamming window generation
hanning Hanning window generation
harris Harris window generation
ifft_r1 Inverse Fast Fourier Transform - Real
ifft_r2 Inverse Fast Fourier Transform - Com-

plex
vmul Multiply two vectors into a third vector

Matrix Functions matrix_add Add two matrices and return a sum
MATRIX

matrix_allocate Allocate a matrix and return its MATRIX
pointer

matrix_crop Form sub-matrix from a larger matrix
matrix_det Return the determinant of a square matrix
matrix_free Free matrix area and MATRIX structure
matrix_invert Invert a square matrix, return inverse

MATRIX
matrix_mult Multiply two matrices, return new

MATRIX
matrix_mult_pwise Multiply two matrices element by ele-

ment
matrix_print Print the elements of a matrix to stdout
matrix_scale Scale all of a matrix by a constant
matrix_sub Subtract two matrices and return a differ-

ence MATRIX
matrix_transpose Transpose a matrix, return pointer to new

MATRIX
Queue Support Func-
tions

dequeue_ptr Remove data from a queue and adjust
pointer

enqueue_ptr Load data into Queue and update pointers
enqueued Return count of data elements in a Queue
queue_init Initialize memory Queue structure

BERR Sequence Gen-
eration Functions

berr_decode Tests a value in a BERR sequence

berr_encode Generate the next value in a BERR
sequence

berr_initialize Set up a BERR sequence generator
Data Compression
Functions

a_compress A-Law data compression

a_expand A-Law data expansion
mu_compress Mu-Law data compression
mu_expand Mu-Law data expansion
Development Package Software Manual 111

Target DSP Peripheral Libraries

112
 Development Package Software Manual

CHAPTER 8 Host DLL Reference
DLL Functions Grouped by Function

The functions tabularized below may be used in any Host program written in a lan-
guage which supports access to a Dynamic Link Library. The prototypes for these
functions are listed in the PERIPH\INCLUDE\LIB\TARGET.H file. These names
of these functions are aliai of the actual board-specific library function names
which are prototyped in PERIPH\LIB\HOST\ALIAS.H.

TABLE 21. Generic DLL Function List

Category Function Prototype Function Description
General BOOL target_open(int target) Opens driver for specfied target DSP

board. Returns boolean.
BOOL target_close(int target) Closes driver for specfied target DSP

board. Returns boolean
LPVOID target_cardinfo(int target); Returns address of cardinfo structure

for target.
int iicoffld(char *, int target, HWND hPar-
ent);

Loads a COFF executable file onto
target DSP

Interrupt

Functions

BOOL host_interrupt_enable(int target); Enables a previously installed virtual
interrupt handler.

BOOL host_interrupt_disable(int target); Disables a previously enabled virtual
interrupt handler
Development Package Software Manual 113

Host DLL Reference

114
void host_interrupt_install(int target,
void (*virtual_isr)(void *), void * con-
text);

Installs a virtual interrupt handler

void target_interrupt(int target); Interrupts target DSP board
void host_interrupt_deinstall(int target); Removes a virtual interrupt handler.
void mailbox_interrupt(int target,
unsigned int value);

Interrupts the target DSP after writing
value to special mailbox

unsigned int mailbox_interrupt_ack(int
target);

Acknowledges target to Host inter-
rupt, returns special mailbox contents

Control

Functions

void target_reset(int target); Physically asserts reset on the target
DSP board.

void target_run(int target); Deasserts reset on the target DSP
board

void target_outport(int target, int port, int
value);

Outputs a value to specified DSP
board I/O port address

int target_inport(int target, int port); Inputs a value from specified DSP
board I/O port

void target_opreg_outport(int target, int
port, int value);

Outputs a value to specified DSP
board operation port address

int target_opreg_inport(int target, int port); Inputs a value from specified DSP
board operation port

void target_control(int target, int bit, int
state);

Modifies a bit in the control register
of the target DSP board

Mailbox

Functions

int read_mailbox(int target, int); Reads the specified mailbox of the
target DSP board

void write_mailbox(int target, int, int); Writes to the specified mailbox of the
target DSP board.

BOOL check_outbox(int target, int); Interrogates the specified output mail-
box status

BOOL check_inbox(int target, int); Interrogates the specified input mail-
box status

int read_mb_terminate(int target, int, int *,
int wide);

Reads the specified input mailbox, if
full

int write_mb_terminate(int target, int
box_number, int value, int wide);

Writes to the specified output mail-
box, if empty

void clear_mailboxes(int target); Clears all mailboxes to empty state
int target_key(int target); Reads terminal mailbox, returns an 8-

bit contents
void target_emit(int target, int value); Writes 8-bit value to terminal mailbox
void target_Tx(int target, int value); Writes 32-bit value to terminal mail-

box
int target_Rx(int target); Reads 32-bit value from terminal

mailbox
Bulk
Transport
Interface

Functions

int BULK_GetNumDevices(); Returns the number of SBC62 USB
devices detected

BOOL BULK_OpenDevice(int iDevice,
HANDLE *phDevice)

Opens a device for BULK transport
access.

BOOL BULK_CloseDevice(IN HAN-
DLE hDevice)

Closes a device for BULK transport
access

BOOL BULK_OpenChannel(int iDevice,
WORD wChannel, BOOL fOverlapped,
BULK_HANDLE *pHandle);

Opens a data channel in BULK mode
Development Package Software Manual

BOOL
BULK_CloseChannel(BULK_HANDLE
Handle)

Closes a data channel opened with
BULK_OpenChannel()

BOOL BULK_Read(BULK_HANDLE
Handle, LPVOID lpBuffer, DWORD
dwNumberOfBytesToRead, LPDWORD
lpNumberOfBytesRead, LPOVER-
LAPPED lpOverlapped);

Reads a block of data in BULK mode.

BOOL BULK_Write(BULK_HANDLE
Handle, LPCVOID lpBuffer, DWORD
dwNumberOfBytesToWrite, LPDWORD
lpNumberOfBytesWritten, LPOVER-
LAPPED lpOverlapped);

Writes a block of data in BULK mode

BOOL
BULK_GetOverlappedReadResult(BULK
_HANDLE Handle, LPOVERLAPPED
lpOverlapped, LPDWORD lpNumberOf-
BytesTransferred, BOOL bWait)

Gets the WIN32 Overlapped Result
for the Read portion of the data chan-
nel.

BOOL
BULK_GetOverlappedWriteResult(BUL
K_HANDLE Handle, LPOVERLAPPED
lpOverlapped, LPDWORD lpNumberOf-
BytesTransferred, BOOL bWait);

Gets the WIN32 Overlapped Result
for the Write portion of the data chan-
nel.

BOOL
BULK_CancelIo(BULK_HANDLE Han-
dle)

Cancels all pending I/O on the device

BOOL EXPORT STREAM_Open(int iDe-
vice, WORD wChannel, WORD wBuffer-
Size,WORD wBlockSize,
BULK_HANDLE *pHandle)

Opens s data channel in STREAM
node.

BOOL
STREAM_Close(BULK_HANDLE han-
dle)

Closes a STREAM data channel

WORD
STREAM_WriteAvailable(BULK_HAND
LE handle)

Returns the amount of space available
for Write data

WORD
STREAM_ReadAvailable(BULK_HAND
LE handle)

Returns the amount of data available
on the STREAM channel

WORD
STREAM_Write(BULK_HANDLE han-
dle, INT32 *pBuffer, WORD wElement-
Count)

Writes a block of data to the
STREAM channel

void STREAM_Read(BULK_HANDLE
handle, INT32 *pBuffer, WORD wEle-
mentCount)

Reads a block of data from the
STREAM channel

void STREAM_Flush(BULK_HANDLE
handle)

Writes all the output data to the target

Sempahore

Functions

void get_semaphore(int target, int sema-
phore);

Gains ownership of specfied target
semaphore

void request_semaphore(int target, int
semaphore);

Requests ownership of specified tar-
get semaphore
Development Package Software Manual 115

Host DLL Reference

116
BOOL own_semaphore(int target, int
semaphore);

Interrogates ownership status of speci-
fied semaphore

void release_semaphore(int target, int
semaphore);

Relinquishes control of specified
semaphore

Talker

Functions

int target_check(int target); Interrogates for Talker running on tar-
get

void start_app(int target); Starts a previously downloaded target
application program

int start_talker(int target); Starts the target Talker executing.
int target_revision(int target); Returns the revision of the target

Talker
Development Package Software Manual

Development Package Software Manual 117

Host DLL Reference

118
 Development Package Software Manual

CHAPTER 9 DOS Environment
Requirements
Innovative Integration Developers Packages, including the TI C Compiler, make
use of environment variables in order to locate header files monitor script files, etc.
Be sure to set the following environment variables when installing either the C
compiler or II libraries. Note that a number of these environment variables may be
automatically set when running the SETUP program on the distribution disks.
However, when upgrading from previous versions or when mixing development
components from II or other sources, problems can arise.

Use the table below to insure that you specify all needed environment variables.

 Environment
Variable Name

Products
Affected Suggested settings

DSP_COMPILE
R

All TI C Com-
pilers

set DSP_COMPILER=<compiler dir>

ie set DSP_COMPILER=c:\c6xtools
II_BOARD Dev Pkg Applets set II_BOARD=<board dir>

ie set II_BOARD=c:\M62cc
C_DIR All TI C Com-

pilers

All II peripheral
libraries

set C_DIR=%ii_board%;%ii_board%\include\tar-
get;<compiler dir>

ie set C_DIR=c:\M62cc;c:\M62cc\include\tar-
get;c:\c6xtools

Specified order is critical!
Development Package Software Manual 119

DOS Environment Requirements

120

>

TABLE 22. Required disk directory structure for II development tools.

The II TI C Development System for the M62 requires the following environment
variables be set properly for correct operation:

set dsp_compiler=c:\c6xtools

set ii_board=c:\M62cc

set c_dir=%ii_board;%ii_board%\include\target;c:\c6xtools

set a_dir=%ii_board;%ii_board%\include\target;c:\c6xtools

set d_src=c:\M62cc\stdio;c:\M62cc\dsp;

c:\M62cc\periph\analog;c:\M62cc\periph\digital;

c:\M62cc\periph\misc;c:\M62cc\periph\flash;

c:\M62cc\periph\bus

set c_option=-ss -o2 -g –x2 –q

C_OPTIONS TI Flt Pt C Com-
piler

set C_OPTIONS=<switches>

ie set C_OPTIONS =-q –x2 –o2 –g –ss
A_DIR All TI Assem-

blers
Same as C_DIR above

D_DIR TI Debuggers

(Not Code Com-
poser)

set D_DIR=<debugger dir>

ie set D_DIR=c:\c3xhll

D_SRC All Debuggers set D_SRC=<source code dir1>;<dir2>;...;<dir n

ie set D_SRC=c:\M62cc\stdio;c:\M62cc\dsp;

c:\M62cc\periph\analog;c:\M62cc\periph\digital;…

;c:\M62cc\periph\bus
PATH All II products

All TI Tools

set path=<old path>;<compiler dir>;<board
dir>;<host lib dir>

set
path=%path%;%dsp_compiler%;%ii_board%;%ii_b
oard%\host\lib
Development Package Software Manual

path=%path%;%dsp_compiler%;%ii_board%;%ii_board%\lib\host
Development Package Software Manual 121

DOS Environment Requirements

122
 Development Package Software Manual

	CHAPTER 1 Introduction �13
	CHAPTER 2 Installation �15
	CHAPTER 3 Integrated Development Environment �21
	CHAPTER 4 Developing Target Code �59
	CHAPTER 5 Developing Host Code �83
	CHAPTER 6 Creating Target Software �89
	CHAPTER 7 Target DSP Peripheral Libraries �105
	CHAPTER 8 Host DLL Reference �113
	CHAPTER 9 DOS Environment Requirements �119
	List of Tables
	List of Figures
	CHAPTER 1 Introduction
	A Note about this Manual

	CHAPTER 2 Installation
	Host Hardware Requirements
	Software Installation
	Configuring the Developer’s Package
	Multiple Board Support
	Troubleshooting Software Installation Problems

	CHAPTER 3 Integrated Development Environment
	The Texas Instruments C Compiler Toolset
	C Compiler Toolset Usage

	Codewright Editor
	Code Composer Debugger
	Support Applets
	The Terminal Emulator
	FIGURE 1.� Terminal emulator applet
	FIGURE 2.� Terminal emulator file menu
	FIGURE 3.� Diagnostic received when target DSP is halted.
	FIGURE 4.� Terminal emulator plot menu dialog box.
	FIGURE 5.� Terminal emulator Window menu.

	The COFF File Downloader
	FIGURE 6.� The Coff File Downloader Applet

	The COFF File Dump Utility
	FIGURE 7.� The COFF Dump Utility
	FIGURE 8.� COFF Dump utility output.

	The MPO Editor
	FIGURE 9.� The MPO Editor
	FIGURE 10.� MPOEditor "Open" Dialog box.
	FIGURE 11.� COFF File list change dialog box.

	The Viewer Applet
	FIGURE 12.� Viewer main window
	FIGURE 13.� Opening the target DSP
	FIGURE 14.� Variants of Viewers dump command
	FIGURE 15.� Viewers plot window
	TABLE 1. Generic DLL Function List
	TABLE 2. Viewer “target” memory selection commands
	TABLE 3. Viewer “target” memory operators
	TABLE 4. Target memory display operators
	TABLE 5. TDUMP mode selector commands
	TABLE 6. Shorthand memory dump commands
	TABLE 7. Viewer math and binary operators
	TABLE 8. Viewer dictionary commands
	TABLE 9. Viewer system commands
	TABLE 10. Viewer system commands
	TABLE 11. Target DLL function shortcuts

	CHAPTER 4 Developing Target Code
	Introduction
	Edit-Compile-Test Cycle using Codewright
	A Simple Codewright Project
	FIGURE 16.� Creating a new project in Codewright
	FIGURE 17.� Adding files to a Codewright project
	FIGURE 18.� Codewright Project Window.
	FIGURE 19.� Codewright compiler progress in output window
	Automatic makefile creation
	FIGURE 20.� An example of an auto-generated makefile

	Rebuilding a Project
	Running the Target Executable

	Anatomy of a Target Program
	Use of Library Code
	Compiling/Assembling/Linking Outside Codewright
	Compiling without a Project
	Building Libraries

	The Next Step: Developing Custom Code
	Edit-Compile-Test Cycle using Code Composer Studio
	A Simple Studio Project
	FIGURE 21.� Creating a new project in Studio
	FIGURE 22.� Adding files to a Studio project
	FIGURE 23.� Studio Project Window.
	FIGURE 24.� Studio compiler progress in output window
	Automatic makefile creation
	Rebuilding a Project
	Running the Target Executable

	CHAPTER 5 Developing Host Code
	Dynamic Link Library
	Sample Host Programs
	The XRPT example

	CHAPTER 6 Creating Target Software
	C Code Development
	C Compiler
	C Library Reference
	M62 Zuma Toolset Libraries
	TABLE 12. Zuma Toolset Source Directories
	TABLE 13. Zuma Toolset support subdirectories
	TABLE 14. Texas Instruments Standard Library Functions

	M62 Hardware Interaction
	TABLE 15. M62 External Peripheral Memory Map

	Digital Input/Output
	TABLE 16. Digital I/O Access Memory Location
	TABLE 17. Digital I/O Latch Configuration
	TABLE 18. Digital I/O library functions

	Timers
	TABLE 19. C Language Timer Functions
	TABLE 20. STDIO Driver Functions

	Example Target Programs for the M62
	HELLO
	TEST

	CHAPTER 7 Target DSP Peripheral Libraries
	CHAPTER 8 Host DLL Reference
	TABLE 21. Generic DLL Function List

	CHAPTER 9 DOS Environment Requirements
	TABLE 22. Required disk directory structure for II development tools.

